OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 17 — Aug. 25, 2003
  • pp: 1987–1994

Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution

Feng Di, Yan Yingbai, Jin Guofan, and Wu Minxian  »View Author Affiliations

Optics Express, Vol. 11, Issue 17, pp. 1987-1994 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a rigorous electromagnetic design and analysis of two-dimensional diffractive lenses (DLs) with different axial resolution and high lateral resolution. Without paraxial approximation, focusing characteristics of two kinds of DL, one with a long focal depth and a high lateral resolution, the other with high axial resolution and high lateral resolution, for f-numbers of 0.6, 1.0, 1.5, and 2.0 have been determined including the actual focal depth, the ratio between the focal depth of the designed DL and the focal depth of the conventional quadratic lens, and the spot size of the central lobe at the actual focal plane. Numerical and graphic results show that the designed DLs indeed have a long focal depth and a high lateral resolution, or high axial resolution and high lateral resolution by use of different preset focal depths.

© 2003 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(220.3620) Optical design and fabrication : Lens system design

ToC Category:
Research Papers

Original Manuscript: July 9, 2003
Revised Manuscript: August 11, 2003
Published: August 25, 2003

Feng Di, Yan Yingbai, Jin Guofan, and Wu Minxian, "Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution," Opt. Express 11, 1987-1994 (2003)

Sort:  Journal  |  Reset  


  1. J. Sochacki, S. Bara, Z. Jaroszewicz, and A. Kolodziejczyk, �??Phase retardation of the uniform-intensity axilens,�?? Opt. Lett. 17, 7�??9 (1992). [CrossRef] [PubMed]
  2. N. Davidson, A. A. Friesem, and E. Hasman, �??Holographic axilens: high resolution and long focal depth,�?? Opt. Lett. 16, 523�??525 (1991). [CrossRef] [PubMed]
  3. P. Varga, �??Use of confocal microscopes in conoscopy and ellipsometry. 1. Electromagnetic theory,�?? Appl. Opt. 39, 6360�??6365 (2000). [CrossRef]
  4. C. Yang and J. Mertz, �??Transmission confocal laser scanning microscopy with a virtual pinhole based on nonlinear detection,�?? Opt. Lett. 28, 224�??226 (2003). [CrossRef] [PubMed]
  5. P. Torok and T. Wilson, �??Rigorous theory for axial resolution in confocal microscopes,�?? Opt. Commun. 137, 127�??135 (1997). [CrossRef]
  6. J. S. Ye, B. Z. Dong, B. Y. Gu, G. Z. Yang, and S.-T. Liu, �??Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory,�?? J. Opt. Soc. Am. A 19, 2030�??2035 (2002). [CrossRef]
  7. B. Z. Dong, J. Liu, B. Y. Gu, G. Z. Yang, and J. Wang, �??Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution,�?? J. Opt. Soc. Am. A 18, 1465�??1470 (2001). [CrossRef]
  8. B. Lichtenberg and N. C. Gallagher, �??Numerical modeling of diffractive devices using the finite element method, �?? Opt. Eng. 33, 3518�??3526 (1994). [CrossRef]
  9. K. Hirayama, E. N. Glytsis, T. K. Gaylord, and D. W. Wilson, �??Rigorous electromagnetic analysis of diffractive cylindrical lenses,�?? J. Opt. Soc. Am. A 13, 2219�??2231 (1996). [CrossRef]
  10. D. W. Prather, M. S. Mirotznik, and J. N. Mait, �??Boundary element method for vector modeling diffractive optical elements, �?? in Diffractive and Holographic Optics Technology II, I. Cindrich and S. H. Lee, eds., Proc. SPIE 2404, 28�??39 (1995). [CrossRef]
  11. D. W. Prather and S. Shi, �??Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements, �?? J. Opt. Soc. Am. A 16, 1131�??1142 (1999). [CrossRef]
  12. J. Jiang and G. P. Nordin, �??A rigorous unidirectional method for designing finite aperture diffractive optical elements,�?? Opt. Express 7, 237�??242 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-6-237.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-6-237</a> [CrossRef] [PubMed]
  13. S. D. Mellin and G. P. Nordin, �??Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design,�?? Opt. Express 8, 705�??722 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-13-705.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-13-705</a> [CrossRef] [PubMed]
  14. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  15. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, Mass., 1995).
  16. D. W. Prather, S. Y. Shi, and J. Sonsrtoem, �??Electromagnetic analysis of finite-thickness diffractive elements,�?? Opt. Eng. 41, 1792�??1796 (2002). [CrossRef]
  17. D. W. Prather, D. Pustai, and S. Y. Shi, �?? Performance of multilevel diffractive lenses as a function of f-number,�?? Appl. Opt. 40, 207�??210 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited