OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 18 — Sep. 8, 2003
  • pp: 2190–2197

Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography

Michael Pircher, Erich Götzinger, Rainer Leitgeb, Adolf F. Fercher, and Christoph K. Hitzenberger  »View Author Affiliations

Optics Express, Vol. 11, Issue 18, pp. 2190-2197 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (353 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present measurements of water absorption in human cornea in vitro with a differential absorption optical coherence tomography (DAOCT) technique. This technique uses two OCT images recorded simultaneously with two different light sources, one centered within (1488nm) and one centered outside (1312nm) of a water absorption band. We investigated the cornea under different conditions: First, a series of OCT images were recorded at different hydration states of the cornea, starting from a normally hydrated cornea to an almost completely dehydrated cornea. To investigate the influence of scattering on our measurements, the dehydrated cornea was re-hydrated with Deuterium oxide, which shows similar optical properties like water, but negligible absorption in the used wavelength region, and a similar series of OCT images was recorded. For a quantitative analysis, we averaged the OCT signals over adjacent A-Scans and performed a linear regression analysis of the logarithmic OCT signals versus imaging depth in the cornea for each wavelength. The difference of the slopes corresponds to the difference in the absorption coefficient, if the difference in the scattering coefficient is negligible. With the known difference in the absorption cross section it is possible to calculate the mean water concentration of the cornea.

© 2003 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Research Papers

Original Manuscript: July 1, 2003
Revised Manuscript: August 19, 2003
Published: September 8, 2003

Michael Pircher, Erich Götzinger, Rainer Leitgeb, Adolf Fercher, and Christoph Hitzenberger, "Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography," Opt. Express 11, 2190-2197 (2003)

Sort:  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, �??Optical coherence tomography�?? Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattman, �??In vivo optical coherence tomography�?? Am. J. Ophthalmology 116, 113-114 (1993).
  3. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner,J. S. Schuman, J. G. Fujimoto, �??Ultrahigh-resolution ophthalmic optical coherence tomography�?? Nature Med. 7, 502-507 (2001). [CrossRef] [PubMed]
  4. B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York 2002).
  5. A. F. Fercher, C. K. Hitzenberger, �??Optical coherence tomography, �??Chapter 4 in Progress in Optics 44, Elsevier Science B.V. (2002)
  6. A. F. Fercher, W. Drexler, C. K. Hitzenberger and T. Lasser, �??Optical coherence tomography- principles and application�?? Rep. Prog. Phys. 66. 239-303 (2003) [CrossRef]
  7. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography" Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  8. S. Yazdanfar, A. M. Rollins, J. A. Izatt, �??Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography�?? Opt. Lett. 25, 1448-1450 (2000). [CrossRef]
  9. U. Morgner, W. Drexler, F. X. Kaertner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, �??Spectroscopic optical coherence tomography�?? Opt. Lett. 25, 111-113 (2000) [CrossRef]
  10. G. M. Hale, M.R. Querry: �??Optical Constants of Water in the 200nm to 200m Wavelength Region�?? Appl. Opt. 12, 555-563 (1973) [CrossRef] [PubMed]
  11. J. M. Schmitt, S. H. Xiang, K. M. Yung �??Differential absorption imaging with optical coherence tomography�?? JOSA A, 15, 2288-2296 (1998) [CrossRef]
  12. U. S. Sathyam, B. W. Colston, Jr., L. B. Da Silva, and M. J. Everett �??Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths�?? Appl. Opt. 38, 2097-2104 (1999) [CrossRef]
  13. Y. Feng, J. Varikooty, T.L. Simpson: �??Diurnal Variation of Corneal and Corneal Epithelial Thickness Measured Using Optical Coherence Tomography�?? Cornea 20, 480-483 (2001) [CrossRef] [PubMed]
  14. J. M. Schmitt, S. L. Lee, K. M. Yung: �??An optical coherence microscope with enhanced resolving power in thick tissue�?? Opt. Commun. 142, 203-207 (1997) [CrossRef]
  15. H.E. Kaufmann, B.A. Barron, M.B. McDonald, "The Cornea" (Butterworth-Heinemann 1998)
  16. J. W. Goodman, "Statistical Optics" (John Wiley & Sons, Inc, New York 1985).
  17. M. Pircher, E. Götzinger, R. Leitgeb, A. F. Fercher and C. K. Hitzenberger, �??Speckle reduction in optical coherence tomography by frequency compounding�?? J. Biomed. Opt. 8 (3) (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (677 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited