OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 19 — Sep. 22, 2003
  • pp: 2344–2353

Coherent X-ray diffractive imaging: applications and limitations

S. Marchesini, H. N. Chapman, S. P. Hau-Riege, R. A. London, A. Szoke, H. He, M. R. Howells, H. Padmore, R. Rosen, J. C. H. Spence, and U. Weierstall  »View Author Affiliations

Optics Express, Vol. 11, Issue 19, pp. 2344-2353 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (848 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The inversion of a diffraction pattern offers aberration-free diffraction-limited 3D images without the resolution and depth-of-field limitations of lens-based tomographic systems, the only limitation being radiation damage. We review our recent experimental results, in which X-ray images were reconstructed from the diffraction pattern alone. A preliminary analysis of the radiation dose needed for CXDI imaging and the dose tolerance of frozen-hydrated life-science samples suggests that 3D tomography at a resolution of about 10 nm may be possible. In material science, where samples are less sensitive to radiation damage, we expect CXDI to be able to achieve 1 to 2 nm resolution using modern x-ray synchrotron sources. For higher resolution imaging of biological material, strategies based on fast-pulse illumination from proposed x-ray free-electron laser sources, can be considered as described in Neutze et al. Nature 406, 752–757 (2000).

© 2003 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(110.7440) Imaging systems : X-ray imaging
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy

ToC Category:
Focus Issue: Coherent x-ray optics

Original Manuscript: August 11, 2003
Revised Manuscript: September 9, 2003
Published: September 22, 2003

S. Marchesini, H. Chapman, S. Hau-Riege, R. London, A. Szoke, H. He, M. Howells, H. Padmore, R. Rosen, J. Spence, and U. Weierstall, "Coherent X-ray diffractive imaging: applications and limitations," Opt. Express 11, 2344-2353 (2003)

Sort:  Journal  |  Reset  


  1. D. Sayre, "Some implications of a theory due to Shannon," Acta Cryst. 5, 843 (1952). [CrossRef]
  2. J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. 21, 2758-2769 (1982). [CrossRef] [PubMed]
  3. V. Elser, "Phase retrieval by iterative projections," J. Opt. Soc. Am. A 20, 40-55 (2003). [CrossRef]
  4. A. Szöke, "Holographic microscopy with a complicated reference," J. Image. Sci. Technol. 41, 332-341 (1997).
  5. S. P. Hau-Riege, H. Szoke, H. N. Chapman, A. Szoke, "SPEDEN: Reconstructing single particles from their diffraction patterns," J. Struct. Biol. (submitted).
  6. J. Miao, P. Charalambous, J. Kirz, D. Sayre, "Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens," Nature 400, 342-344 (1999). [CrossRef]
  7. J. Miao, T. Ishikawa, B. Johnson, E. H. Anderson, B. Lai, K. O. Hodgson, "High resolution 3D x-ray diffraction microscopy," Phys. Rev. Lett. 89, 088303-1-4 (2002). [CrossRef] [PubMed]
  8. G. J. Williams, M. A. Pfeifer, I. A. Vartanyants, I. K. Robinson, "Three-Dimensional Imaging of Microstructure in Au Nanocrystals," Phys. Rev. Lett. 90, 175501-1-4 (2003). [CrossRef] [PubMed]
  9. H. He, S. Marcesini, M. Howells, U. Weierstall, G. Hembree, J. C. H. Spence, "Experimental lensless soft xray imaging using iterative algorithms: phasing diffuse scattering," Acta. Cryst. A59, 143-152 (2003).
  10. H. He, S. Marchesini, M. Howells, U. Weierstall, H. Chapman, S. Hau-Riege, A. Noy, J. C. H. Spence, "Inversion of x-ray diffuse scattering to images using prepared objects," Phys. Rev. B 67, 174114 (2003). [CrossRef]
  11. S. Marchesini, H. He, H. N. Chapman, A. Noy, S. P. Hau-Riege, M. R. Howells, U. Weierstall, J. C. H. Spence, "X-ray image reconstruciton from the diffraction pattern alone," Phys. Rev. B (to be published) arXiv:physics/0306174.
  12. Z. M. Zuo, I. Vartanyants, M. Gao, R. Zang, L. A. Nagahara, "Atomic resolution imaging of a carbon nanotube from diffraction intensities," Science 300, 1419-1421 (2003). [CrossRef] [PubMed]
  13. U. Weierstall, Q. Chen, J. C. H. Spence, M. R. Howells, M. Isaacson, R. R. Panepucci, "Image reconstruction from electron and x-ray diffraction patterns using iterative algorithms: theory and experiment," Ultramicrosc. 90, 171-195 (2002). [CrossRef]
  14. J. C. H. Spence, U. Weierstall, M. Howells, "Phase recovery and lensless imaging by iterative methods in optical, X-ray and electron diffraction," Phil. Trans. Roy. Soc. Lond. A 360, 875-895 (2002). [CrossRef]
  15. M. R. Howells, P. Charalambous, H. He, S. Marchesini, J. C. H. Spence, "An off-axis zone-plate monochromator for high-power undulator radiation," in Design and Microfabrication of Novel X-ray Optics, D. Mancini, ed. Vol. 4783, (SPIE, Bellingham, 2002).
  16. R. Hegerl, W. Hoppe, "Influence of electron noise on three-dimensional image reconstruction," Zeitschrift für Naturforschung 31a, 1717-1721 (1976).
  17. B. F. McEwen, K. H. Downing, R. M. Glaeser, "The relevance of dose-fractionation in tomography of radiation-sensitive specimens," Ultramicrosc. 60, 357-373 (1995). [CrossRef]
  18. B. L. Henke, J. W. M. DuMond, "Submicroscopic structure determination by long wavelength x-ray diffraction," J. Appl. Phys. 26, 903-917 (1955). [CrossRef]
  19. A. Rose, "Television pickup tubes and the problem of vision," in Advances in Electronics, L. Marton, ed. Vol. 1, (New York, 1948).
  20. J. C. Solem, G. C. Baldwin, "Microholography of Living Organisms," Science 218, 229-235 (1982). [CrossRef] [PubMed]
  21. J. C. Solem, G. F. Chapline, "X-Ray Biomicroholography," Opt. Eng. 23, 193-202 (1984).
  22. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, "Potential for biomolecular imaging with femtosecond x-ray pulses," Nature 406, 752-757 (2000). [CrossRef] [PubMed]
  23. A. Szoke, "Time resolved holographic diffraction with atomic resolution," Chem. Phys. Lett. 313, 777-788 (1999). [CrossRef]
  24. J. Miao, K. O. Hodgson, D. Sayre, "An approach to three-dimensional structures of biomolecules," Proc. Nat. Acad. Sci. 98, 6641-6645 (2001). [CrossRef] [PubMed]
  25. J. Franck, Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic Press, San Diego, 1996).
  26. M. v. Heel, B. Gowen, R. Matadeen, E. V. Orlova, R. Finn, T. Pape, D. Cohen, H. Stark, R. Schmidt, M. Schatz, A. Patwardhan, "Single-particle electron cryo-microscopy: towards atomic resolution," Quart. Rev. Biophys. 33, 269-307 (2000).
  27. G. Huldt, A. Szoke, J. Hajdu, "Single Particle Diffraction Imaging: Image Classification," J. Struct. Biol. (to be published). [PubMed]
  28. E. J. McGuire, "K-Shell Auger Transition Rates and Fluorescence Yields for Elements Be-Ar," Phys. Rev. 185, 1-6 (1969). [CrossRef]
  29. I. F. Furguson, Auger Microprobe Analysis (Adam Hilger, New York, 1989).
  30. TESLA Test Facility web page, <a href="http://www-hasylab.desy.de/facility/fel/vuv/main.htm">http://www-hasylab.desy.de/facility/fel/vuv/main.htm</a>
  31. J. W. Miao, K. O. Hodgson, T. Ishikawa, C. A. Larabell, M. A. LeGros, Y. Nishino, "Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction," Proc. Nat. Acad. Sci. Am. 100, 110-112 (2003). [CrossRef]
  32. W. Meyer-Ilse, D. Hamamoto, A. Nair, S. A. Lelievre, G. Denbeaux, L. Johnson, A. L. Pearson, D. Yager, M. A. Legros, C. A. Larabell, "High resolution protein localization using soft X-ray microscopy," J. Microsc. 201, 395-403 (2001). [CrossRef] [PubMed]
  33. H. N. Chapman, J. Fu, C. Jacobsen, S. Williams, "Dark-field X-ray microscopy of immunogold-labeled cells," J. Micros. Soc. Am. 2, 53-62 (1996).
  34. T. Beetz, C. Jacobsen, C. C. Cao, J. Kirz, O. Mentez, C. Sanches-Hanke, D. Sayre, D. Shapiro, "Development of a novel apparatus for experiments in soft x-ray diffraction imaging and diffraction tomography," J. de Phys. IV 104, 351-359 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (733 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited