OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 19 — Sep. 22, 2003
  • pp: 2385–2396

Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave

G. Steinmeyer  »View Author Affiliations

Optics Express, Vol. 11, Issue 19, pp. 2385-2396 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel design approach for dispersion-compensating chirped mirrors with greater-than-octave bandwidth is proposed. The commonly encountered problem of dispersion ripple is overcome by impedance matching via Brewster incidence in respect to the top-layer coating material. This approach totally suppresses undesired reflections off the interface to the ambient medium without any need for complicated matching sections. It is shown that Brewster-angled chirped mirrors can deliver ultrabroadband dispersion compensation over a much wider bandwidth than conventional double-chirped mirrors and without the mechanical complexity of back-deposition approaches. Due to their relatively simple structure, the sensitivity of the dispersion of the Brewster-angled designs towards growth errors is greatly reduced. Therefore, this new generation of chirped mirrors appears ideal for compression of continuum pulses with a potential of pulse durations in the single-cycle regime.

© 2003 Optical Society of America

OCIS Codes
(310.6860) Thin films : Thin films, optical properties
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Research Papers

Original Manuscript: July 9, 2003
Revised Manuscript: September 5, 2003
Published: September 22, 2003

G. Steinmeyer, "Brewster-angled chirped mirrors for high-fidelity dispersion compensation and bandwidths exceeding one optical octave," Opt. Express 11, 2385-2396 (2003)

Sort:  Journal  |  Reset  


  1. A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, R. Szip�?cs, �??All-solid-state cavity-dumped sub-5-fs laser,�?? Appl. Phys. B 65, 175�??188 (1997). [CrossRef]
  2. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, �??Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,�?? Opt. Lett. 24, 631�??633, (1999). [CrossRef]
  3. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, �??Ultrabroadband double-chirped mirror pairs for generation of octave spectra,�?? J. Opt. Soc. Am. B 18, 882�??885, (2001). [CrossRef]
  4. L. Xu, L. Liming, N. Nakagawa, R. Morita, M. Yamashita, �??Application of a spatial light modulator for programmable optical pulse compression to the sub-6-fs regime,�?? IEEE Phot. Technol. Lett. 12, 1540�??1542, (2000). [CrossRef]
  5. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, O. Svelto �??Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,�?? Opt. Lett. 28, to be published, Oct. 15, (2003). [CrossRef] [PubMed]
  6. N. Zhavoronkov, G. Korn, �??Generation of single intense short optical pulses by ultrafast molecular phase modulation,�?? Phys. Rev. Lett. 88, 203901 (2002). [CrossRef] [PubMed]
  7. V. Kalosha, J. Herrmann, �??Ultrabroadband phase-amplitude modulation and compression of extremely short uv and vuv pulses by Raman-active molecular modulators,�?? Phys. Rev. A 67, 031801 (2003). [CrossRef]
  8. F. Gires, P. Tournois, �??Interféromètre utilisable pour la compression d�??impulsions lumineuses modulées en fréquence,�?? C. R. Acad. Sci. Paris 258, 6112, (1964).
  9. G. Steinmeyer, �??Dispersion oscillations in ultrafast phase correction devices,�?? IEEE J. Quantum Electron., 39, 1027�??1034, (2003). [CrossRef]
  10. R. Szip�?cs, K. Ferencz, C. Spielmann, F. Krausz, �??Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers,�?? Opt. Lett. 19, 201�??203, (1994). [CrossRef]
  11. R. Szip�?cs and A. K�?házi-Kis, �??Theory and desing of chirped dielectric mirrors,�?? Appl. Phys. B 65, 115�??135, (1997). [CrossRef]
  12. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, T. Tschudi, �??Design and fabrication of double-chirped mirrors,�?? Opt. Lett. 22, 831�??833, (1997). [CrossRef] [PubMed]
  13. N. Matuschek, F. X. Kärtner, U. Keller, �??Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,�?? IEEE J. Quantum Electron. 35, 129�??137, (1999). [CrossRef]
  14. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, P. G. Verly, �??Optimal single-band normal-incidence antireflection coatings,�?? Appl. Opt. 35, 644�??658, (1996). [CrossRef] [PubMed]
  15. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, U. Keller �??Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,�?? Appl. Phys. B 71, 509-522, (2000). [CrossRef]
  16. G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, K. Ferencz, �??Tilted-front-interface chirped mirrors,�?? J. Opt. Soc. Am. B 18, 1747�??1750, (2001). [CrossRef]
  17. K. Starke, D. Ristau, Laserzentrum Hannover, private communication, (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (675 KB)     
» Media 2: GIF (698 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited