OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 19 — Sep. 22, 2003
  • pp: 2425–2432

Geometrical optimization of the transmission and dispersion properties of arrayed waveguide gratings using two stigmatic point mountings

P. Mũnoz, D. Pastor, J. Capmany, and A. Martínez  »View Author Affiliations

Optics Express, Vol. 11, Issue 19, pp. 2425-2432 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (128 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, the procedure to optimize flat-top Arrayed Waveguide Grating (AWG) devices in terms of transmission and dispersion properties is presented. The systematic procedure consists on the stigmatization and minimization of the Light Path Function (LPF) used in classic planar spectrograph theory. The resulting geometry arrangement for the Arrayed Waveguides (AW) and the Output Waveguides (OW) is not the classical Rowland mounting, but an arbitrary geometry arrangement. Simulation using previous published enhanced modeling show how this geometry reduces the passband ripple, asymmetry and dispersion, in a design example.

© 2003 Optical Society of America

OCIS Codes
(110.5100) Imaging systems : Phased-array imaging systems
(220.1000) Optical design and fabrication : Aberration compensation
(220.2740) Optical design and fabrication : Geometric optical design
(230.1150) Optical devices : All-optical devices
(230.1980) Optical devices : Diffusers
(230.7390) Optical devices : Waveguides, planar
(230.7400) Optical devices : Waveguides, slab

ToC Category:
Research Papers

Original Manuscript: August 4, 2003
Revised Manuscript: September 10, 2003
Published: September 22, 2003

P. Muñoz, D. Pastor, J. Capmany, and A. Martínez, "Geometrical optimization of the transmission and dispersion properties of arrayed waveguide gratings using two stigmatic point mountings," Opt. Express 11, 2425-2432 (2003)

Sort:  Journal  |  Reset  


  1. M.K. Smit, C. van Dam, �??PHASAR-Based WDM-Devices: Principles, Design and Applications,�?? J. Sel. Top. Quantum Electron. 2, 236-250 (1996). [CrossRef]
  2. H. Takenouchi, H. Tsuda and T. Kurokawa, �??Analysis of optical-signal processing using an arrayed-waveguide grating,�?? Opt. Express 6 124-135 (2000), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-6-124">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-6-124</a>. [CrossRef] [PubMed]
  3. Y. Yoshikuni, �??Semiconductor Arrayed Waveguide Gratings for Photonic Integrated Devices,�?? J. Sel. Top. Quantum Electron. 8, 1102-1114 (2002). [CrossRef]
  4. H. Takahashi, S. Suzuki, I. Nishi, �??Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,�?? J. Lightwave Technol. 12, 989-995 (1994). [CrossRef]
  5. H. Takahashi, H. Toba, Y. Inoue, �??Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer,�?? Electron. Lett. 30, 44-45 (1994). [CrossRef]
  6. D. Huang, T. Chin, Y. Lai, �??Arrayed waveguide grating DWDM interleaver,�?? Proc. OFC, 3 WDD80 1-3 (2001).
  7. H. Takahashi, K. Oda, H. Toba, Y. Inoue, �??Transmission characteristics of arrayed waveguide N x N wavelength multiplexer,�?? J. Lightwave Technol. 13 447-455 (1995). [CrossRef]
  8. C. Dragone, �??Efficient N x N star couplers using Fourier Optics,�?? J. Lightwave Technol. 7, 479-489 (1989). [CrossRef]
  9. R. März, Integrated optics: design & modeling, (Artech House, 1995), Chap. 8.
  10. B. Soole e.a., �??Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,�?? Phot. Tech. Lett. 8, 1340-1342 (1996). [CrossRef]
  11. L.B. Soldano, E.C.M. Pennings, �??Optical multi-mode interference devices based on self-imaging: principles and applications,�?? J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  12. K. Okamoto, A. Sugita, �??Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,�?? Electron. Lett. 32, 1661-1662 (1996). [CrossRef]
  13. D. Wang, G. Jin, Y. Yan and M. Wu, �??Aberration theory of arrayed waveguide grating,�?? J. Lightwave Technol. 19, 279-284 (2001). [CrossRef]
  14. P. Muñoz, D. Pastor, J. Capmany, �??Modeling and design of arrayed waveguide gratings,�?? J. Lightwave Technol. 20, 661-674 (2002). [CrossRef]
  15. P. Muñoz, D. Pastor, J. Capmany, �??Analysis and design of arrayed waveguide gratings with MMI couplers,�?? Opt. Express 9, 328-338 (2001), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-328">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-7-328</a>. [CrossRef]
  16. ITU-T G.692 Rec. �??Optical interfaces for multichannel systems with optical amplifiers,�?? (1998).
  17. M. Hammer, �??WMM mode solver. Numerical simulation of rectangular integrated optical waveguides,�?? University of Twente, Faculty of Mathematical Sciences. <a href= "http://www.physik.uni-osnabrueck.de/theophys">http://www.physik.uni-osnabrueck.de/theophys</a>.
  18. C.D. Lee e.a., �??The role of photomask resolution on the performance of arrayed-waveguide grating devices,�?? J. Lightwave Technol. 19, 1726-1733 (2001). [CrossRef]
  19. P. Muñoz, D. Pastor, J. Capmany, S. Sales, �??Analytical and Numerical Analysis of Phase and Amplitude Errors in the Performance of Arrayed Waveguide Gratings,�?? J. Sel. Top. Quantum Electron. 8, 1130-1141 (2002). [CrossRef]
  20. J.W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, 1994), Chaps. 4 and 5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (1087 KB)     
» Media 2: GIF (1115 KB)     
» Media 3: GIF (1129 KB)     
» Media 4: GIF (1135 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited