OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 19 — Sep. 22, 2003
  • pp: 2440–2445

Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation

Stas O. Konorov and Aleksei M. Zheltikov  »View Author Affiliations

Optics Express, Vol. 11, Issue 19, pp. 2440-2445 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microstructure fibers with multiple submicron cores are used to frequency-convert unamplified 0.3-nJ, 80-fs pulses of 800-nm Ti: sapphire laser radiation to the spectral range of 400–500 nm. This frequency-upconverted radiation is then employed to induce reversible changes in the absorption spectrum of spiropyran molecules through photochromic transformations in a solid-phase spiropyran/PMMA sample. Microstructure fibers are thus shown to enhance the capabilities of low-power femtosecond lasers, making unamplified ultrashort pulses suitable for photochemical and micromachining applications.

© 2003 Optical Society of America

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Research Papers

Original Manuscript: August 6, 2003
Revised Manuscript: September 12, 2003
Published: September 22, 2003

Stas Konorov and Aleksei Zheltikov, "Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation," Opt. Express 11, 2440-2445 (2003)

Sort:  Journal  |  Reset  


  1. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  2. J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, �??Photonic bandgap guidance in optical fibers,�?? Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  3. W.H. Reeves, J.C. Knight, P.St.J. Russell, and P.J. Roberts, �??Demonstration of ultraflattened dispersion in photonic crystal fibers,�?? Opt. Express 10, 609-613 (2002), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609</a>. [CrossRef] [PubMed]
  4. N.G.R. Broderick, T.M. Monro, P.J. Bennett, and D.J. Richardson, �??Nonlinearity in holey optical fibers: measurement and future opportunities,�?? Opt. Lett. 24, 1395-1397 (1999). [CrossRef]
  5. A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, �??Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,�?? Appl. Phys. B 73, 181-184 (2001). [CrossRef]
  6. Nonlinear optics of photonic crystals, Feature issue of J. Opt. Soc. Am. B 19, no. 9 (2002).
  7. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, �??Microstructured optical fiber devices,�?? Opt. Express 9, 698-713 (2001), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>. [CrossRef] [PubMed]
  8. J.K. Ranka, R.S. Windeler, and A.J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000). [CrossRef]
  9. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.P.M. Mann, and P.St.J. Russell, �??Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,�?? J. Opt. Soc. Am. B 19, 2148-2155 (2002). [CrossRef]
  10. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, �??Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,�?? Science, 288, 635-639 (2000). [CrossRef] [PubMed]
  11. R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000). [CrossRef] [PubMed]
  12. A. Baltuska, T. Fuji, and T. Kobayashi, �??Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier,�?? Opt. Lett. 27, 1241-1243 (2002). [CrossRef]
  13. A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel�??skii, Yu.N. Kondrat�??ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, J. Raman Spectrosc. �??Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,�?? 33, 888-896 (2002). [CrossRef]
  14. I. Hartl, X. D. Li, C. Chudoba, R.K. Rhanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, and R.S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608-610 (2001). [CrossRef]
  15. A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, V.V. Yakovlev, L.A. Mel'nikov, V.I. Beloglazov, N.B. Skibina, and A.V. Shcherbakov, �??Enhanced �?(3) interactions of unamplified femtosecond Cr: forsterite laser pulses in photonic-crystal fibers,�?? J. Opt. Soc. Am. B 19, 2183-2191 (2002). [CrossRef]
  16. S. Coen, A. Hing Lun Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  17. A. Efimov, A.J. Taylor, F.G. Omenetto, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Nonlinear generation of very high-order UV modes in microstructured fibers,�?? Opt. Express 11, 910-918 (2003), <a href= �??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910</a>. [CrossRef] [PubMed]
  18. A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat Jr., M. Scalora, D. Chorvat, and A.M. Zheltikov, �??Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,�?? Appl. Phys. B 77, no. 1/2 (2003). [CrossRef]
  19. H. Dürr and H. Bouas-Laurent (Eds.), Photochromism: Molecules and Systems (Elsevier, Amsterdam, 1990).
  20. D.A. Parthenopoulos and P.M. Rentzepis, �??Three-dimensional optical storage memory,�?? Science 245, 843-845 (1989). [CrossRef] [PubMed]
  21. D.A. Akimov, N.I. Koroteev, S.A. Magnitskii, A.N. Naumov, D.A. Sidorov-Biryukov, A.B. Fedotov, and A.M. Zheltikov, �??Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics,�?? Jpn. J. Appl. Phys. 36, 426-428 (1997). [CrossRef]
  22. S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi, and F. Diederich, �??Reversible optical structuring of polymer waveguides doped with photochromic molecules,�?? Appl. Phys. Lett. 77, 921-923 (2000). [CrossRef]
  23. S.O. Konorov, A.B. Fedotov, and A.M. Zheltikov, �??Three-dimensional reversible laser micromachining with subnanojoule femtosecond pulses based on two-photon photochromism,�?? Appl. Phys. B 76, 707-710 (2003). [CrossRef]
  24. I. Willner, �??Photoswitchable biomaterials: en route to optobioelectronic systems,�?? Acc. Chem. Res. 30, 347-356 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited