OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 2 — Jan. 27, 2003
  • pp: 141–150

Spatial location weighted optimization scheme for DC optical tomography

Jun Zhou, Jing Bai, and Ping He  »View Author Affiliations

Optics Express, Vol. 11, Issue 2, pp. 141-150 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a spatial location weighted gradient-based optimization scheme for reducing the computation burden and increasing the reconstruction precision is stated. The method applies to DC diffusion-based optical tomography, where otherwise the reconstruction suffers slow convergence. The inverse approach employs a weighted steepest descent method combined with a conjugate gradient method. A reverse differentiation method is used to efficiently derive the gradient. The reconstruction results confirm that the spatial location weighted optimization method offers a more efficient approach to the DC optical imaging problem than unweighted method does.

© 2002 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Research Papers

Original Manuscript: December 12, 2002
Revised Manuscript: January 16, 2003
Published: January 27, 2003

Jun Zhou, Jing Bai, and Ping He, "Spatial location weighted optimization scheme for DC optical tomography," Opt. Express 11, 141-150 (2003)

Sort:  Journal  |  Reset  


  1. A. H. Hielscher, A. D. Klose, K. M. Hanson, �??Gradient-Based Iterative Image-Reconstruction Scheme for Time-Resolved Optical Tomography,�?? IEEE Trans. Med. Imag. 18, 262-271 (1999) [CrossRef]
  2. R. Roy and E. M. Sevick-Muraca, �??Active constrained truncated Newton method for simple-bound optical tomography,�?? J. Opt. Soc. Am. A 17, 1627-1641 (2000) [CrossRef]
  3. F. E. W. Schmidt, Development of a Time-Resolved Optical Tomography System for Neonatal Brain Imaging, Ph. D thesis (1999), University College London
  4. R. Roy and E. M. Sevick-MUraca, �??Truncated Newton�??s optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation,�?? Opt. Express 4, 353-371 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-10-353">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-10-353</a> [CrossRef] [PubMed]
  5. S. R. Arridge, M. Schweiger, �??A gradient-based optimisation scheme for optical tomography,�?? Opt. Express 2, 213-226 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-6-213">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-6-213</a> [CrossRef] [PubMed]
  6. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, �??Three-dimensional optical tomography of hemodynamics in the human head,�?? Opt. Express 9, 272-286 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-272">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-6-272</a> [CrossRef] [PubMed]
  7. Y. Pei, Optical Tomographic Imaging Using the Finite Element Method, Ph. D. Thesis (1999), Polytechnic University.
  8. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. S. Barbour, R. L. Barbour, �??Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,�?? Appl. Opt. 9, 6466-6486 (2000) [CrossRef]
  9. S. R. Arridge, W. R. B. Lionheart, �??Nonuniqueness in diffusion-based optical tomography,�?? Opt. Lett. 23, 882-884 (1998) [CrossRef]
  10. Y. Pei, H. L. Graber, R. L. Barbour, �??Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,�?? Opt. Express 9, 97- (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-2-97</a> [CrossRef] [PubMed]
  11. S. R. Arridge, M. Schweiger, �??Photon-measurement density functions. Part2: Finite-element-method calculations,�?? Appl. Opt. 34, 8026-8037 (1995) [CrossRef] [PubMed]
  12. Y. Q. Yao, Y. Wang, Y. L. Pei, W. W. Zhu, R. L. Barbour. �??Frequency-domain optical imaging of absorption and scattering distributions by Born iterative method,�?? J. Opt. Soc. Am. A 14, 325-342 (1997) [CrossRef]
  13. K. D. Paulsen and H. Jiang, �??Spatially varying optical property reconstruction using a finite element diffusion equation approximation,�?? Med. Phys. 22, 691-701 (1995) [CrossRef] [PubMed]
  14. A. J. Davies, D. B. Christianson, L. C. W. Dixon, R. Roy, P. van der Zee, �??Reverse differentiation and the inverse diffusion problem,�?? Advances in Engineering Software 28, 217-221 (1997) [CrossRef]
  15. A. D. Klose and A. H. Hielscher, �??Optical tomography using the time-independent equation of radiative transfer �?? Part 2: inverse model,�?? J. Quant. Spectrosc. Radiat. Transfer 72, 715-732 (2002) [CrossRef]
  16. A Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Chap. 9
  17. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, �??Boundary conditions for the diffusion equation in radiative transfer,�?? J. Opt. Soc. Am. A 11, 2727-2741 (1994) [CrossRef]
  18. I. W. Kwee, Towards a Bayesian Framework for Optical Tomography, Ph. D. Thesis (1999), University College London.
  19. S. G. Nash, A. Sofer, Linear and nonlinear programming(McGraw-Hill, New York, 1996)
  20. S. R. Arridge, M. Schweiger, M. Hiraoka, D.T. Delpy, �??A finite element approach for modeling photon transport in tissue,�?? Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited