OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 20 — Oct. 6, 2003
  • pp: 2452–2458

Soft lithography replication of polymeric microring optical resonators

Yanyi Huang, George T. Paloczi, Jacob Scheuer, and Amnon Yariv  »View Author Affiliations

Optics Express, Vol. 11, Issue 20, pp. 2452-2458 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a soft lithography method to replicate polymeric integrated optical devices. In this method, the master device and the molded replica are made of the same materials, allowing direct comparison. To evaluate the quality of the replication, microring optical resonators are chosen as test devices because of their sensitivity to small fabrication errors. The master devices are precisely fabricated using direct electron beam lithography. The replicas are produced by the molding technique and subsequent ultraviolet curing. Compared with the master devices, the molded devices show minimal change in both physical shape and optical performance. This correspondence indicates the merits of soft lithographic methods for fabrication of precision integrated optical devices.

© 2003 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(140.4780) Lasers and laser optics : Optical resonators
(160.5470) Materials : Polymers
(250.5460) Optoelectronics : Polymer waveguides

ToC Category:
Research Papers

Original Manuscript: August 21, 2003
Revised Manuscript: September 10, 2003
Published: October 6, 2003

Yanyi Huang, George Paloczi, Jacob Scheuer, and Amnon Yariv, "Soft lithography replication of polymeric microring optical resonators," Opt. Express 11, 2452-2458 (2003)

Sort:  Journal  |  Reset  


  1. L. Eldada, and L. W. Shacklette, �??Advances in polymer integrated optics,�?? IEEE J. Sel. Top. Quantum Electron. 6, 54-68 (2000). [CrossRef]
  2. H. Ma, A. K.-Y. Jen, and L. R. Dalton, �??Polymer-based optical waveguides: materials, processing, and devices,�?? Adv. Mater. 14, 1339-1365 (2002). [CrossRef]
  3. A. Yariv, �??Universal relations for coupling of optical power between microresonators and dielectric waveguides,�?? Electron. Lett. 36, 321-322 (2000). [CrossRef]
  4. A. Yariv, �??Critical coupling and its control in optical waveguide-ring resonator systems,�?? IEEE Photonics Technol. Lett. 14, 483-485 (2002). [CrossRef]
  5. J. M. Choi, R. K. Lee, and A. Yariv, �??Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective seitching, modulation, amplification, and oscillation,�?? Opt. Lett. 26, 1236-1238 (2001). [CrossRef]
  6. J. M. Choi, R. K. Lee, and A. Yariv, �??Ring fiber resonators based on fused-fiber grating add-drop filters: application to resonator coupling" Opt. Lett. 27, 1598-1600 (2002). [CrossRef]
  7. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, �??Polymer micro- ng filters and modulators,�?? J. Lightwave Technol. 20, 1968-1975 (2002). [CrossRef]
  8. C. Chao, and L. J. Guo, �??Polymer microring resonators fabricated by nanoimprint technique,�?? J. Vac. Sci. Technol B 20, 1862-2866 (2002). [CrossRef]
  9. X. M. Zhao, Y. Xia, and G. M. Whitesides, �??Soft lighographic methods for nano-fabrication,�?? J. Mater. Chem. 7, 1069-1074 (1997) [CrossRef]
  10. Y. Xia and G. M. Whitesides, �??Soft lithography,�?? Annu. Rev. Mater. Sci. 28, 153-184 (1998). [CrossRef]
  11. Y. Xia and G. M. Whitesides, �??Soft lithography,�?? Angew. Chem. Int. Ed. 37, 550-575 (1998). [CrossRef]
  12. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, �??Unconventional methods for fabricating and patterning nanostructures,�?? Chem. Rev. 99, 1823-1848 (1999). [CrossRef]
  13. S. R. Quake, and A. Scherer, �??From micro- to nanofabrication with soft materials,�?? Science 290, 1536-1540 (2000). [CrossRef] [PubMed]
  14. J. A. Rogers, M. Meier, and A. Dodabalapur, �??Using printing and molding techniques to produce distributed feedback and Bragg reflector resonatiors for plastic lasers,�?? Appl. Phys. Lett. 73, 1766-1768 (1998). [CrossRef]
  15. J. A. Rogers, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Cappuzzo, �??Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplaner substrates,�?? Appl. Phys. Lett. 74, 3257-3259 (1999). [CrossRef]
  16. N. Suganuma, A. Seki, Y. Tanaka, M. Ichikawa, T. Koyama, and Y. Taniguchi, �??Organic polymer DBR laser by softlithography,�?? J. Photopoly. Sci. Tech. 15, 273-278 (2002). [CrossRef]
  17. D. Pisignano, M. Anni, G. Gigli, R. Cingolani, G. Barbarella, L. Favaretto, and G. Sotgiu, �??Flexible organic distributed feedback structures by soft lithography,�?? Synth. Metals 137, 1057-1058 (2003). [CrossRef]
  18. O. J. A. Schueller, G. M. Whitesides, J. A. Rogers, M. Meier, and A. Dodabalapur, �??Fabrication of photonic crystal lasers by nanomolding of solgel glasses,�?? Appl. Opt. 38, 5799-5802 (1999). [CrossRef]
  19. M. Meier, A. Dodabalapur, J. A. Rogers, R. E. Slusher, A. Mekis, A. Timko, C. A. Murray, R. Ruel, and O. Nalamasu, �??Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding,�?? J. Appl. Phys. 86, 3502-3507 (1999). [CrossRef]
  20. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, �??Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,�?? Appl. Phys. Lett. 82, 1152-1154 (2003). [CrossRef]
  21. X. M. Zhao, S. P. Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, �??Demonstration of waveguide couplers fabricated using microtransfer molding,�?? Appl. Phys. Lett. 71, 1017-1019 (1997). [CrossRef]
  22. R. Horvath, L. R. Lindvold, and N. B. Larsen, �??Fabrication of all-polymer freestanding waveguides,�?? J. Micromech. Microeng. 13, 419-424 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited