OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 20 — Oct. 6, 2003
  • pp: 2480–2485

660GHz soliton source based on modulation instability in a short cavity

Y. D. Gong, P. Shum, D. Y. Tang, C. Lu, and X. Guo  »View Author Affiliations

Optics Express, Vol. 11, Issue 20, pp. 2480-2485 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrashort soliton source, with very high repetition rate, is a necessity for next generation optical fiber communication. A very simple passively mode-locked fiber ring laser centered at 1566 nm, which is based on the modulation instability (MI) theory, is proposed. Using high Erbium-doped (6470ppm) Bismuth fiber, a soliton pulse train, with 660 GHz repetition rate and pulse width of 420 fs, has been observed in a 11.5m short cavity for the first time.

© 2003 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Research Papers

Original Manuscript: July 31, 2003
Revised Manuscript: September 9, 2003
Published: October 6, 2003

Y. Gong, P. Shum, D. Tang, C. Lu, and X. Guo, "660GHz Solitons Source Based on Modulation Instability in Short Cavity," Opt. Express 11, 2480-2485 (2003)

Sort:  Journal  |  Reset  


  1. Baoxi Xu, Gaoqiang Yuan, Chong Wei Chuah, Honggang Wang and Tow Chong Chong, �??40GHz pulse generation and performance analysis of actively mode-locked fiber ring laser,�?? ICOCN, 14H2, Singapore (2002)
  2. Min-Yong Jeon, Hak Kyu Lee, Joon Tae Ahn, Kyong Hon Kim, Dong Sung Lim and Ei-Hang Lee, �??Pulseamplitude- equalized output from a rational harmonic mode-locked fiber laser,�?? Opt. Lett. 23, .855-857 (1998) [CrossRef]
  3. J.Azana and M.A.Muriel, �??Temporal self-imaging effects: Theory and application for multiplying pulse repetition rates,�?? IEEE J. Sel. Quantum Electron. 37, 728-744 (2001) [CrossRef]
  4. Kamal K.Gupta, Noriaki Onodera, Kazi S.Abedin and Masaharu Hyodo, �??Pulse repetition frequency multiplication via intracavity optical filtering in AM mode-locked fiber ring lasers,�?? IEEE Photo. Tech. Lett. 14, 284-286 (2002) [CrossRef]
  5. G. Yandong, S. Ping, T.Dingyuan, �??298fs Passively Mode Locked Ring Fiber Soliton Laser,�?? Micro. & Opt. Tech. Lett. 32, 320-333 (2002) [CrossRef]
  6. I. N. Duling, III, �??Subpicosecond all fiber erbium lasers,�?? Elec. Lett. 27, 544-545 (1991) [CrossRef]
  7. Y. D. Gong, P. Shum, D. Y. Tang, C. Lu, Z. W. Qi, W. J. Lai, W. S. Man and H. Y. Tam, �??Closed spaced ultra-short bound solitons from DI-NOLM figure 8 fiber laser,�?? Opt. Commun. 220, 297-302 (2003) [CrossRef]
  8. Y.D. Gong, P. Shum, T.H. Cheng, Q. Wen, D.Y. Tang, �??Bound soliton pulses in passively mode locked fiber laser,�?? Opt. Commun. 200, 389-399 (2002) [CrossRef]
  9. Masataka Nakazawa, Kazunri uzuki, Hermann A Haus, �??The modulational instability laser�??Part I: Experiment,�?? IEEE J. Quantum Electron. 25, 2036-2044 (1989) [CrossRef]
  10. Eiji Yoshida, Masataka Nakazawa, �??Low-threshold 115GHz Continuous-wave modulational-instability erbium-doped fiber laser,�?? Opt. Lett 22, 1409-1411 (1997) [CrossRef]
  11. P. Franco, F. Fontana, I. Cristiani, M. Midrio and M. Romagnoli, �??Self-induced modulational-instability laser,�?? Opt. Lett 20, 2009-2011 (1995) [CrossRef] [PubMed]
  12. Govind P. Agrawal. Nonlinear fiber optics, (New York: Academic Press, 1995)
  13. Masataka Nakazawa, Kazunri uzuki, Hirokazu Kubota, Hermann A Haus, �??The modulational instability laser�??Part II: Theory,�?? IEEE J. Quantum Electron. 25, 2045-2052 (1989) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited