OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 20 — Oct. 6, 2003
  • pp: 2532–2548

Integrated diamond sapphire laser

Richard L. Fork, Wesley W. Walker, Rustin L. Laycock, Jason J.A. Green, and Spencer T. Cole  »View Author Affiliations


Optics Express, Vol. 11, Issue 20, pp. 2532-2548 (2003)
http://dx.doi.org/10.1364/OE.11.002532


View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use analytic expressions and simulations to examine a model laser gain element formed by integrating diamond and a solid state laser material, such as, Ti:sapphire. The gain element is designed to provide in a single composite structure the thermal management capabilities of diamond and the optical amplification of the laser material. The model results indicate low temperature and a specific radial dependence of the heat transfer coefficient at the material interfaces are needed to access the highest average powers and highest quality optical fields. We outline paths designed to increase average output power of a lowest order mode laser oscillator based on these gain elements to megawatt levels. The long term goal is economically viable solar power delivered safely from space. The short term goal is a design strategy that will facilitate “proof of principle” demonstrations using currently accessible optical pump and thermal management capabilities.

© 2003 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Research Papers

History
Original Manuscript: August 4, 2003
Revised Manuscript: September 18, 2003
Published: October 6, 2003

Citation
Richard Fork, Wesley Walker, Rustin Laycock, Jason Green, and Spencer Cole, "Integrated diamond sapphire laser," Opt. Express 11, 2532-2548 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2532


Sort:  Journal  |  Reset  

References

  1. See, e.g., Matthew H. Smith, Richard L. Fork and Spencer T. Cole, �??Safe delivery of optical power from space,�?? Opt. Express 8, 537-546 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-10-537">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-10-537</a> [CrossRef] [PubMed]
  2. See, e.g., �??Mid Infra-Red Advanced Chemical Laser,�?? Journal of Aerospace and Defense Industry News, Dec. (1997).
  3. W. Koechner, Solid-State Laser Engineering, 5th Ed, (Springer-Verlag, Berlin, 1999).
  4. �??High temperature superconductor power transformer,�?? Superconductivity Program Overview, <a href=http://www.nrel.gov/docs/fy02osti/31252.pdf>http://www.nrel.gov/docs/fy02osti/31252.pdf</a>.
  5. Dan Marker and Mark Gruneisen, �??Thirty meter diameter large space telescope�?? <a href=" http://www.afrlhorizons.com/Briefs/Sept01/DE0102.html">http://www.afrlhorizons.com/Briefs/Sept01/DE0102.html</a>.
  6. James E. Butler, �??Chemical Vapor Deposited Diamond - Maturity and Diversity,�?? The Electrochemical Society Interface, Spring 2003.
  7. James E. Butler and Henry Windischmann, �??Developments in CVD Diamond Synthesis During the Past Decade,�?? MRS Bulletin, September 1998.
  8. T. Sato, K. Ohashi, T. Sudoh, K. Haruna, and H. Maeta, �??Thermal expansion of a high purity synthetic diamond single crystal at low temperatures,�?? Phys. Rev. B 65 092102(R), 1-4 (2002). [CrossRef]
  9. L. Wei, P. K. Kuo, R. L. Thomas, T.R. Anthony, and W.F. Banholzer, �??Thermal conductivity of isotopically modified single crystal diamond,�?? Phys. Rev. Lett. 70, 3764-3767 (1993). [CrossRef] [PubMed]
  10. F. Nitsche and B. Schumann, �??Heat Transfer Between Sapphire and Lead,�?? J. Low Temperature Phys. 39, 119-130 (1980). [CrossRef]
  11. O. Meissner, Onyx Optics, Inc., private communication.
  12. M. N. Ozisik, Basic Heat Transfer, (McGraw-Hill, New York, 1977).
  13. G. Myers, Analytical Methods in Conduction Heat Transfer, (Genium Publishing Corp., Schenectady, 1987).
  14. See, e.g., J. T. Verdeyen, Laser Electronics 3rd ed., (Prentice Hall, Englewood Cliffs, 1995).
  15. R. L. Fork, O. E. Martinez, J. P. Gordon, �??Negative dispersion using pairs of prisms,�?? Opt. Lett. 9, 150-152 (1984). [CrossRef] [PubMed]
  16. A. M. Zaitsev, Handbook of Industrial Diamonds and Diamond Films, M.A. Prelas, G. Popovici, and L.K. Bigelow, eds. (Marcel Dekker, Inc., New York, 1998)
  17. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, �??Thermal modeling of continuouswave end-pumped solid-state lasers,�?? Appl. Phys. Lett. 56, 1831-1833 (1990). [CrossRef]
  18. L. M. Osterink and J. D. Foster, �??Thermal effects and transverse mode control in a Nd:YAG laser,�?? Appl. Phys. Lett. 12, 128-131 (1968). [CrossRef]
  19. T. Y. Fan and J. Daneu, �??Thermal coefficients of the optical path length and refractive index in YAG,�?? Appl. Opt. 37, 1635-1637 (1998). [CrossRef]
  20. A. C. DeFranzo and B. G. Pazol, �??Index of refraction measurement on sapphire at low temperatures and visible wavelengths,�?? Appl. Opt. 32, 2236 (1993). [CrossRef]
  21. D. Yang, M. E. Thomas, W. J. Tropf, and S. G. Kaplan, �??Infrared refractive index measurements using a new method,�?? in Optical Diagnostic Methods for Inorganic Materials II, ed., Leonard M Hanssen, SPIE 4103, 42-52 (2000). [CrossRef]
  22. P. Schulz and S. Henion, �??Liquid-Nitrogen-Cooled Ti:Al2O3 Laser,�?? IEEE J. Quant. Elect. 27, 1039-1047 (1991). [CrossRef]
  23. T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, �??Temperature dependence of the refractive index of diamond up to 925 K,�?? Phys. Rev. B 2, 16578-16581 (2000). [CrossRef]
  24. R. W. Dixon, �??Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners,�?? J. Appl. Phys. 38, 5149-5153 (1967). [CrossRef]
  25. M. H. Grimsditch, E. Anastassakis, and M. Cardona, �??Piezobirefringence in diamond,�?? Phys. Rev. B 19, 3240-3243 (1979). [CrossRef]
  26. F. Benabid, M. Notcutt, L. Ju, and D. G. Blair, �??Birefringence measurements of sapphire test masses for laser interferometer gravitational wave detector,�?? Phys. Lett. A 237, 337-342 (1998). [CrossRef]
  27. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw Hill, New York, 1970).
  28. W. C. Scott and M. de Wit, �??Birefringence Compensation and TEM00 Mode Enhancement in a Nd:YAG Laser,�?? Appl. Phys. Lett. 18, 3-4 (1971). [CrossRef]
  29. George R. Neil, Thomas Jefferson National Accelerator Facility, private communication.
  30. Michael Landry, �??LIGO Commissioning and Initial Science Runs: Current Status,�?? <a href="http://www.slac.stanford.edu/gen/meeting/ssi/2003/landry/landry.pdf">http://www.slac.stanford.edu/gen/meeting/ssi/2003/landry/landry.pdf</a>.
  31. O. Albert and G. Mourou, �??Single optical cycle laser pulse in the visible and near-infrared spectral range,�?? Appl. Phys. B 69, 207-209 (1999). [CrossRef]
  32. A. Kaplan, �??Diffraction-Induced Transformation of Near-Cycle and Subcycle Pulses,�?? J. Opt. Soc. Am. B 14, 951-956 (1998). [CrossRef]
  33. Richard L. Fork, Spencer T. Cole, Wesley W. Walker, Rustin L. Laycock, and Jason J. A. Green, �??High Average and Peak Power Integrated Laser for Propulsion,�?? NASA Advanced Space Propulsion Workshop, April, Huntsville, AL (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited