OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 21 — Oct. 20, 2003
  • pp: 2697–2703

Experimental studies of the coherence of microstructure-fiber supercontinuum

Xun Gu, Mark Kimmel, Aparna P. Shreenath, Rick Trebino, John M. Dudley, Stéphane Coen, and Robert S. Windeler  »View Author Affiliations

Optics Express, Vol. 11, Issue 21, pp. 2697-2703 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (1070 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phase coherence of supercontinuum generation in microstructure fiber is quantified by performing a Young’s type interference experiment between independently generated supercontinua from two separate fiber segments. Analysis of the resulting interferogram yields the wavelength dependence of the magnitude of the mutual degree of coherence, and a comparison of experimental results with numerical simulations suggests that the primary source of coherence degradation is the technical noise-induced fluctuations in the injected peak power.

© 2003 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Research Papers

Original Manuscript: September 3, 2003
Revised Manuscript: October 6, 2003
Published: October 20, 2003

Xun Gu, Mark Kimmel, Aparna Shreenath, Rick Trebino, John Dudley, Stéphane Coen, and Robert Windeler, "Experimental studies of the coherence of microstructure-fiber supercontinuum," Opt. Express 11, 2697-2703 (2003)

Sort:  Journal  |  Reset  


  1. S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, �??Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,�?? Phys. Rev. Lett. 84, 5102-5105 (2000). [CrossRef] [PubMed]
  2. A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 8720, 203901 (2001).
  3. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002). [CrossRef]
  4. J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-1182 (2002). [CrossRef]
  5. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, �??Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,�?? Opt. Lett. 27, 1174-1176 (2002). [CrossRef]
  6. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, �??Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,�?? Opt. Lett. 27, 445-447 (2002). [CrossRef]
  7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, �??Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,�?? Appl. Phys. B 77, 269-277 (2003). [CrossRef]
  8. T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, �??Long-term carrier-envelope phase coherence,�?? Opt. Lett. 27, 1436-1438 (2002). [CrossRef]
  9. M. Bellini and T. W. Hänsch, �??Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,�?? Opt. Lett. 25, 1049-1051 (2000). [CrossRef]
  10. P. Baum, S. Lochbrunner, J. Piel, and E. Riedle, �??Phase-coherent generation of tunable visible femtosecond pulses,�?? Opt. Lett. 28, 185-187 (2003). [CrossRef] [PubMed]
  11. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000). [CrossRef]
  12. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, �??Coherence degradation in the process of supercontinuum generation in an optical fiber,�?? Opt. Fiber Technol. 4, 215-223 (1998). [CrossRef]
  13. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, art. no.-173901 (2002). [CrossRef] [PubMed]
  14. H. Kubota, K. R. Tamura, and M. Nakazawa, �??Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction,�?? J. Opt. Soc. Am. B 16, 2223-2232 (1999). [CrossRef]
  15. P. D. Drummond and J. F. Corney, �??Quantum noise in optical fibers. I. Stochastic equations,�?? J. Opt. Soc. Am. B 18, 139-152 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited