OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 21 — Oct. 20, 2003
  • pp: 2769–2774

Deformation-induced bandgap tuning of 2D silicon-based photonic crystals

Sukky Jun and Young-Sam Cho  »View Author Affiliations


Optics Express, Vol. 11, Issue 21, pp. 2769-2774 (2003)
http://dx.doi.org/10.1364/OE.11.002769


View Full Text Article

Enhanced HTML    Acrobat PDF (132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the issue of tuning the absolute bandgap in 2D silicon-based photonic crystals by mechanical deformation. The moving least-square (MLS) method, recently proposed by the authors for photonic bandgap materials, is employed for the real-space computation of band structures. The uniaxial tension mode is shown to be more effective for bandgap tuning than both pure and simple shear deformations. We verify that bandgap modifications are strongly influenced by the deformation-induced distortion of interfaces between inclusions and matrix. This result ensures the usefulness of real-space technique for the accurate calculation of strained photonic bandgap materials.

© 2003 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Research Papers

History
Original Manuscript: September 23, 2003
Revised Manuscript: October 15, 2003
Published: October 20, 2003

Citation
Sukky Jun and Young-Sam Cho, "Deformation-induced bandgap tuning of 2D silicon-based photonic crystals," Opt. Express 11, 2769-2774 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-21-2769


Sort:  Journal  |  Reset  

References

  1. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  2. Y. Xia, �??Photonic crystals,�?? Adv. Mater. 13, 369 (2001) and papers in this special issue. [CrossRef]
  3. K. Busch and S. John, �??Liquid-crystal photonic-band-gap materials: the tunable electromagnetic vacuum,�?? Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  4. Y. Shimoda, M. Ozaki, and K. Yoshino, �??Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,�?? Appl. Phys. Lett. 79, 3627-3629 (2001). [CrossRef]
  5. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, �??Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,�?? Appl. Phys. Lett. 75, 932-934 (1999). [CrossRef]
  6. J. Zhou, C.Q. Sun, K. Pita, Y.L. Lam, Y. Zhou, S.L. Ng, C.H. Kam, L.T. Li, and Z.L. Gui, �??Thermally tuning of the photonic band gap of SiO2 colloid-crystal infilled with ferroelectric BaTiO3,�?? Appl. Phys. Lett. 78, 661-663 (2001). [CrossRef]
  7. Y. Saado, M. Golosovsky, D. Davidov, and A. Frenkel, �??Tunable photonic band gap in self-assembled clusters of floating magnetic particles,�?? Phys. Rev. B 66, 195108-195113 (2002). [CrossRef]
  8. S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. G¨ osele, and V. Lehmann, �??Tunable two-dimensional photonic crystals using liquid-crystal infiltration,�?? Phys. Rev. B 61, R2389-R2392 (2000). [CrossRef]
  9. H. Pier, E. Kapon, and M. Moser, �??Strain effects and phase transitions in photonic resonator crystals,�?? Nature (London) 407, 880-883 (2000). [CrossRef] [PubMed]
  10. S. Noda, M. Yokoyama, M. Imada, A. Chutian, and M. Mochizuki, �??Polarization mode controll of twodimensional photonic crystal laser by unit cell structure design,�?? Science 293 1123-1125, (2001) [CrossRef] [PubMed]
  11. S. Kim and V. Gopalan, �??Strain-tunable photonic band gap crystals,�?? Appl. Phys. Lett. 78, 3015-3017 (2001). [CrossRef]
  12. P.A. Bermel and M. Warner, �??Photonic band structure of highly deformable self-assembling systems,�?? Phys. Rev. E 65, 10702-10705 (2002). [CrossRef]
  13. V. Babin, P. Garstecki, and R. Holyst, �??Photonic properties of an inverted face centered cubic opal under stretch and shear,�?? Appl. Phys. Lett. 82, 1553-1555 (2003). [CrossRef]
  14. S. Jun, Y.-S. Cho, and S. Im, �??Moving least-square method for the band-structure calculation of 2D photonic crystals,�?? Opt. Express 11, 541-551 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-541">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-541</a> [CrossRef] [PubMed]
  15. J.M. Gere and S.P. Timoshenko, Mechanics of Materials (PWS Publishing Company, Boston, 1997).
  16. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl, �??Meshless methods: An overview and recent developments,�?? Comput. Methods Appl. Mech. Eng. 139, 3-47 (1996). [CrossRef]
  17. M. Huang, �??Stress effects on the performance of optical waveguides,�?? Int. J. Solids Struct. 40, 1615-1632 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited