OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 22 — Nov. 3, 2003
  • pp: 2807–2812

All-silicon optical temperature sensor based on Multi-Mode Interference

Andrea Irace and Giovanni Breglio  »View Author Affiliations


Optics Express, Vol. 11, Issue 22, pp. 2807-2812 (2003)
http://dx.doi.org/10.1364/OE.11.002807


View Full Text Article

Enhanced HTML    Acrobat PDF (90 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present a novel approach to temperature sensing with optoelectronic devices which relies on the usage of bare silicon as the transducing material. The device is composed by a single mode input waveguide, a MMI region where a number of higher order modes is also allowed to propagate and two output waveguides. The refractive index variation in the MMI section due to temperature shifts induces different phase velocities of the various propagating modes. The position of the input and output waveguides together with the length and width of the MMI section are chosen in order to maximize the sensitivity of the device. Analytical calculations are presented together with BPM simulations aimed to the maximization of the sensitivity of the sensor as a function of its geometries.

© 2003 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.5990) Integrated optics : Semiconductors
(130.6010) Integrated optics : Sensors

ToC Category:
Research Papers

History
Original Manuscript: September 12, 2003
Revised Manuscript: October 17, 2003
Published: November 3, 2003

Citation
Andrea Irace and Giovanni Breglio, "All-silicon optical temperature sensor based on Multi-Mode Interference," Opt. Express 11, 2807-2812 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2807


Sort:  Journal  |  Reset  

References

  1. A. Alvarez-Herrero, H. Guerrero, T. Belenguer and D. Levy, D, �??High-sensitivity temperature sensor based on overlay on side-polished fibers,�?? IEEE Photon. Technol. Lett. 12, 1043-1045 (2000) [CrossRef]
  2. Y.J Rao, K. Kalli, G. Brady, D.J Webb, D.A Jackson, L. Zhang and I. Bennion, �??Spatially-multiplexed fibre-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,�?? Electron. Lett. 31, 1009-1010 (1995) [CrossRef]
  3. A.D Kersey and T.A. Berkoff, �??Fiber-optic Bragg-grating differential-temperature sensor,�?? IEEE Photon, Technol, Lett. 4, 1183 -1185, (1992) [CrossRef]
  4. A. Cusano, G. Breglio, M. Giordano, A. Calabrò, L. Nicolais, A. Cutolo, �??Fiber optic sensing system for smart materials and structures,�?? IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1, 401 -409, (2001)
  5. A. Cusano, G. Breglio, M. Giordano, M. Russo, J. Nasser, �??Optoelectronic refractive index measurements: application for smart polymer processing,�?? Proceedings of IEEE Sensors 2, 1171 -1175 (2002) [CrossRef]
  6. G. Breglio, G. Coppola, A. Cutolo, A. Irace, M. Bellucci and M. Iodice �??Temperature Optical Sensor Based on a Silicon Bi-Modal Y Branch,�?? Proc. SPIE. 4293, 155-161 (2001) [CrossRef]
  7. G. Cocorullo, F.G. Della Corte, M. Iodice, I. Rendina and P.M. Sarro, �??Silicon-on-silicon rib waveguides with a high-confining ion-implanted lower cladding,�?? IEEE J. Sel. Top. Quantum Electron. 4, 983 �??989 (1998) [CrossRef]
  8. S.P. Pogossian, L. Vescan and A. Vonsovici, �??The single-mode condition for semiconductor rib waveguides with large cross section,�?? IEEE J. Lightwave Technol. 16, 1851 -1853 (1998) [CrossRef]
  9. H.F. Talbot, �??Facts relating to optical science No. IV�?? London Edimburgh Philosophical Mag., J. Sci. 9, 401-407, (1836)
  10. D. Marcuse, Light Transmission Optics, (New York, Van Nostrand Reinhold, 1972).
  11. O. Bryngdahl, �??Image formation using self-imaginq techniques,�?? J. Opt. Soc. Am. 63, 416-419 (1973) [CrossRef]
  12. R. Ulrich, �??Image formation by phase coincidences in optical waveguides,�?? Optics Commun. 13, 259-264 (1975) [CrossRef]
  13. Soldano, L.B.; Pennings, E.C.M., �??Optical multi-mode interference devices based on self-imaging: principles and applications,�?? IEEE J. Lightwave Technol. 13, 615-627 (1995) [CrossRef]
  14. G. Coppola, C. R. de Boer, G. Breglio, M. Iodice, A. Irace, P. M. Sarro "Temperature Optical Sensor based on all-silicon Bimodal waveguide," Proc. SESENS (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited