OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 22 — Nov. 3, 2003
  • pp: 2848–2853

Self-diffraction in bacteriorhodopsin films for low power optical limiting

D. Narayana Rao, Chandra S. Yelleswarapu, Sri-Rajasekhar Kothapalli, D.V.G.L.N. Rao, and Brian R. Kimball  »View Author Affiliations


Optics Express, Vol. 11, Issue 22, pp. 2848-2853 (2003)
http://dx.doi.org/10.1364/OE.11.002848


View Full Text Article

Enhanced HTML    Acrobat PDF (101 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated a novel technique for low power optical limiting using self-diffraction in bacteriorhodopsin (bR) films. A cw Ar-Kr laser is used as the pump (input beam, 568 nm) and the output is the first order self-diffracted beam with an observed efficiency of about 0.01%. Input beam intensity is varied over three orders of magnitude in the range of milliwatt to watts per cm2 with output clamped at eye safe level of about 0.13 mW/cm2. Threshold intensity for limiting is governed by the saturation intensity of M-state of bR and hence can be varied by choosing films with different lifetimes.

© 2003 Optical Society of America

OCIS Codes
(140.3360) Lasers and laser optics : Laser safety and eye protection
(160.4890) Materials : Organic materials
(230.4320) Optical devices : Nonlinear optical devices
(260.1960) Physical optics : Diffraction theory
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Research Papers

History
Original Manuscript: September 15, 2003
Revised Manuscript: October 16, 2003
Published: November 3, 2003

Citation
D. Narayana Rao, Chandra Yelleswarapu, Sri-Rajasekhar Kothapalli, D. Rao, and Brian Kimball, "Self-diffraction in bacteriorhodopsin films for low power optical limiting," Opt. Express 11, 2848-2853 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2848


Sort:  Journal  |  Reset  

References

  1. R. C. Hollins, �??Materials for Optical limiters,�?? Current opinion in Solid State and Material Science 4, 189-196 (1999). [CrossRef]
  2. Y-P. Sun and J. E. Riggs, �??Organic and inorganic optical limiting materials. From fullerenes to nanoparticles,�?? Int. Rev. Phys. Chem. 18, 43-90 (1999). [CrossRef]
  3. M. P. Joshi, J. Swiatkiewicz, F. Xu, P. N. Prasad, B. A. Reinhardt, and R. Kannan, �??Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,�?? Opt. Lett. 23, 1742-1744 (1998). [CrossRef]
  4. F. E. Hernandez, S. Yang, E. W. Van Stryland, and D. J. Hagan, �??High Dynamic range casdaded-focus optical limiter,�?? Opt. Lett. 25, 1180-1182 (2000). [CrossRef]
  5. Z. Jin, L. Huang, S. H. Goh, G. Xu and W. Ji, �??Size-dependent optical limiting behavior of multi-walled carbon nanotubes,�?? Chem. Phys. Lett. 352, 328-333 (2002). [CrossRef]
  6. American National Standard for Safe Use of Lasers ANSI Z136.1 �?? 2000. <a href="www.laserinstitute.org">www.laserinstitute.org</a>
  7. Y. Z. Gu, Z. J. Liang, and F. X. Gan, �??Self-diffraction and optical limiting properties of organically modified sol-gel material containing palladium-ocatisopentyloxy-phathalocynine under cw laser illumination,�?? Opt. Mat. 17, 471 (2001). [CrossRef]
  8. Michael E. DeRosa, and Stephan L. Logunov, �??Fiber-optic power limiter based on photothermal defocusing in an optical polymer,�?? Appl. Opt. 42, 2683 (2003). [CrossRef] [PubMed]
  9. P. Wu, Reji Philip, R. B. Laghumavarapu, J. Devulapalli, D. V. G. L. N. Rao, B. Kimball, M. Nakashima, and B. S. DeCristafano, �??Optical Power Limiting with Photoinduced Anisotropy of Azobenzene Films,�?? Appl. Opt. 42, 4560 (2003). [CrossRef] [PubMed]
  10. George E. Dovgalenko, Matthew Klotz, and Gregory J. Salamo, Garry L.Wood �??Optically induced birefringence in bacteriorhodospin as an optical limiter,�?? Appl. Phys. Lett. 68, 287-289 (1996). [CrossRef]
  11. Joby Joseph, F. J. Aranda, D. V. G. L. N. Rao, and B. S. DeCristofano, �??Optical Computing and Information Processing with a Protein Complex,�?? Opt. Mem. Neural Netw. 6, 275 (1997).
  12. D. V. G. L. N. Rao, F. J. Aranda, Z. Chen, J. A. Akkara, D. L. Kaplan and M. Nakashmia, �??Nonlinear optical studies of Bacteriorhodopsin�??, J. Nonlinear Opt. Phys. Mat. 5, 331 (1996). [CrossRef]
  13. J. Vanhanen, S. Parkkinen, V. P. Lappanen, T. Jaaskelainen and J. P. S. Parkkinen, �??Grating Formation in 13-demethyl Bacteriorhodopsin Film,�?? Opt. Rev. 8, 368 (2001). [CrossRef]
  14. H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Sys. Tech. J. 48, 2902 (1969).
  15. M. S. Malcuit, R.W. Boyd, L.W. Hillman, J. Krasinski and Jr. C.R. Stroud, �??Saturation and inverse-saturation absorption line shapes in alexandrite,�?? J. Opt. Soc. Am. B 1, 73-75 (1984). [CrossRef]
  16. Richard B. Gross, K. Can Izgi and Robert R. Birge, �??Holographic thin films, spatial light modulators and optical associative memories based on bacteriorhodopsin,�?? Proc. SPIE 1662, Image Storage and Retrieval Systems, 186-196 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited