OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 23 — Nov. 17, 2003
  • pp: 3010–3021

Difference-frequency-generator-based spectrometer at 3 µm for high-sensitivity C2H2 and H2O detection

G. Rusciano, G. Pesce, F. Pignatiello, and A. Sasso  »View Author Affiliations


Optics Express, Vol. 11, Issue 23, pp. 3010-3021 (2003)
http://dx.doi.org/10.1364/OE.11.003010


View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We detect acetylene and water-vapor lines by using a difference-frequency generator in the spectral region around 3 µm. Both C2H2 and H2O lines belong to fundamental vibrational bands and exhibit a line strength of the order of 10-20 cm/mol. Acetylene molecules were detected either by pure absorption or by first-derivative wavelength-modulation spectroscopy. The minimum detection sensitivity achieved for C2H2 in nitrogen was 4 ppb (parts in 109). Moreover, we discuss the effects of C2H2 pressure reduction in the presence of nitrogen in order to estimate systematic errors in the concentration measurements. Finally, we tested the accuracy of our spectrometer by detecting water vapor present as an impurity in a nitrogen cylinder at a nominal concentration of ≃5 ppm.

© 2003 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Research Papers

History
Original Manuscript: October 9, 2003
Revised Manuscript: October 28, 2003
Published: November 17, 2003

Citation
G. Rusciano, G. Pesce, F. Pignatiello, and A. Sasso, "Difference-frequency-generator�??based spectrometer at 3 μm for high-sensitivity C2H2 and H2O detection," Opt. Express 11, 3010-3021 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-23-3010


Sort:  Journal  |  Reset  

References

  1. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, �??Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,�?? Appl. Phys. B 75, 281-288 (2002). [CrossRef]
  2. F. K. Tittel, D. Richter, and A. Fried, Mid-Infrared Laser Sources, I. T. Sorokina and K.L. Vodopyanov, eds. (Springer-Verlag, Berlin, 2002).
  3. R. E. Neuhauser, U. Panne, R. Niessner, and P.Wilbring, �??On line monitoring of chromium aerosols in industrial exhaust stream by laser-induced plasma spectroscopy (LIPS),�?? J. Anal. Chem. 364, 720-726 (1999).
  4. H. Dahnke, D. Kleine, P. Hering, and M. Mürtz �??Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,�?? Appl. Phys. B 72, 971-975 (2001). [CrossRef]
  5. P. Werle, �??A review of recent advances in semiconductor laser based gas monitors,�?? Spectrochim. Acta Part A 54, 197-236 (1998). [CrossRef]
  6. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, �??Effective utilization of quantum-cascade distributed-feedback lasers in absorption spectroscopy,�?? Appl. Opt. 39, 4425-4430 (2000). [CrossRef]
  7. D. D. Nelson, J. H. Shorter, J. B. Mcmanus, and M. S. Zahniser, �??Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,�?? Appl. Phys. B 75, 343-350 (2002). [CrossRef]
  8. M. M. J. W. Van Herpen, S. Li, S. E. Bisson, S. Te Lintel Hekkert, and F. J. M. Harren, �??Tuning and stability of a continuous-wave mid-infrared high-power single resonant optical parametric oscillator,�?? Appl. Phys. B 75, 329-333 (2002). [CrossRef]
  9. D. Richter, D. G. Lancaster, R. F. Curl,W. Neu, and F. K. Tittel, �??Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,�?? Appl. Phys. B 67, 347-350 (1998). [CrossRef]
  10. Y. Mine, N. Melander, D. Richter, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, �??Detection of formaldehyde using mid-infrared difference-frequency generation,�?? Appl. Phys. B 65, 771-774 (1997). [CrossRef]
  11. W. Chen, G. Mouret, D. Boucher, and F. K. Tittel, �??Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4,�?? Appl. Phys. B 72, 873-876 (2001). [CrossRef]
  12. G. Pesce, G. Rusciano, and A. Sasso, �??Detection and spectroscopy of OH fundamental vibrational band based on a difference frequency generator at 3 µm,�?? Chem. Phys. Lett. 374, 425-431 (2003). [CrossRef]
  13. G. Pesce, G. Rusciano, and A. Sasso �??High sensitivity spectrometer at 3 µm based on difference frequency generation for N2O detection,�?? IEEE Sensor J. 3(2), 206-211 (2003). [CrossRef]
  14. A. Bruno, G. Pesce, G. Rusciano, and A. Sasso, �??Detection and spectroscopy of the n1+ n3 band of N2O by difference-frequency spectrometer at 3 mm,�?? Spectrochim. Acta Part A 58, 2481-2488 (2002). [CrossRef]
  15. A. Khorsandi, U. Willer, P. Geiser, and W. Schade, �??MIR-difference frequency laser spectrometer for CO detection in combustions,�?? Iranian J. Phys. Res. 3, 4 (2003).
  16. R. P. Lucht, R. L. Farrow, R. E. Palmer, �??Acetylene measurements in flames by coherent anti-stokes Raman spectroscopy,�?? Combust. Sci. Technol. 45, 261 (1986). [CrossRef]
  17. J. Bood, P. E. Bengtsson, and M. Aldén, �??Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300-600 K using dual-broadband rotational CARS,�?? Appl. Phys. B 70, 607-620 (2000). [CrossRef]
  18. G. A. Raiche, D. R. Crosley, and R. A. Copeland, Am. Inst. Phys. Proc. 191 758 (1989).
  19. B. A. Williams and J. W. Fleming, �??Laser-induced fluorescence detection of acetylene in low-pressure propane and methane flames,�?? Appl. Phys. B 75, 883-890 (2002). [CrossRef]
  20. W. Chen, G. Mouret, and B. Boucher, �??Difference-frequency laser spectroscopy detection of acetylene trace constituent,�?? Appl. Phys. B 67, 375-378 (1998). [CrossRef]
  21. F. S. Pavone and M. Inguscio �??Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,�?? Appl. Phys. B 56, 118-122 (1993). [CrossRef]
  22. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, �??Quasi-phase-matched second harmonic generation: tuning and tolerances,�?? IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  23. USF HITRAN-PC Version 2.0 (University of South Florida, Tampa, Fla., 1992).
  24. M. Erdélyn, D. Richter, and F. K. Tittel �??13CO2 12CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 μm,�?? Appl. Phys. B 75, 289-295 (2002). [CrossRef]
  25. B. J. Finlayson-Pitts and J. N. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley-Interscience, New-York, 1987), p. 65.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited