OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 23 — Nov. 17, 2003
  • pp: 3041–3047

Poling of a channel waveguide

Fatima C. Garcia, Laura Vogelaar, and Raman Kashyap  »View Author Affiliations


Optics Express, Vol. 11, Issue 23, pp. 3041-3047 (2003)
http://dx.doi.org/10.1364/OE.11.003041


View Full Text Article

Enhanced HTML    Acrobat PDF (340 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes thermal poling of a silica based channel waveguide Mach-Zehnder interferometer, and direct measurent of the dc-Kerr and induced electro-optic coefficients. A χ(3) of 5.2 (±0.4)×10-22 (m/V)2 was measured for the un-poled waveguide, and r-coefficient of approximately 0.07 pm/V was induced by poling. χ(3) increased by a factor of 1.9 after poling. It is shown that the dc-Kerr effect plays an important role in the poled device.

© 2003 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(190.3270) Nonlinear optics : Kerr effect
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Research Papers

History
Original Manuscript: September 29, 2003
Revised Manuscript: October 29, 2003
Published: November 17, 2003

Citation
Fatima Garcia, Laura Vogelaar, and Raman Kashyap, "Poling of a channel waveguide," Opt. Express 11, 3041-3047 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-23-3041


Sort:  Journal  |  Reset  

References

  1. R. A. Myers, N. Mukherjee and S. R. J. Brueck, �??Large second-order nonlinearity in poled fused silica,�?? Opt. Lett.16, 1732 (1991). [CrossRef] [PubMed]
  2. X. C. Long, R. A. Myers and S. R. J. Brueck, �??Measurement of the linear electro-optic effect in silica amorphoussilica,�?? Opt. Lett. 19, 1819 (1994). [CrossRef] [PubMed]
  3. P. G. Kazansky, P. St. J. Russell and H. Takebe, �??Glass fiber poling and applications,�?? J. Lightwave Technol. 15, 1484 (1997). [CrossRef]
  4. A. C. Liu, M. J. F. Digonnet and G. S. Kino, �??Electro-optic phase modulation in silica channel waveguide,�?? Opt. Lett. 19, 466 (1994). [CrossRef] [PubMed]
  5. M. E. Farries, M. E. Fermann, L. Li, M. C. Farries and D. N. Payne, �??Frequency-doubling by modal phase matching in poled optical fibres,�?? Electron. Lett. 24, 895 (1988).
  6. X. C. Long, R. A. Myers and S. R. J. Brueck, �??Measurement of linear electro-optic effect in temperature/electric- field poled optical fibres,�?? Electron. Lett. 30, 2162 (1994). [CrossRef]
  7. T. G. Alley, S. R. J. Brueck and M. Wiedenbeck, �??Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,�?? J. of Appl. Phys. 86, 6634, (1999). [CrossRef]
  8. D. E. Carlson, �??Ion depletion of glass at a blocking anode: I, Theory and experimental results for alkali silicate glasses,�?? J. Am. Cer. Soc. 57, 291 (1974). [CrossRef]
  9. P. G. Kazansky and P. St. J. Russell, �??Thermally poled glass: frozen-in electric field or oriented dipoles?,�?? Opt. Commun. 110, 611, (1994). [CrossRef]
  10. T. Fujiwara, S. Matsumoto, M. Ohama and A. J. Ikushima, �??Origin and properties of second-order optical non- linearity in ultraviolet-poled GeO2�??SiO2 glass,�?? J. Non-Crystal. Sol. 273, 203 (2000). [CrossRef]
  11. N. Godbut, S. Lacroix, Y. Quiquempois, G. Martinelli P. Bernage, �??Measurement and calculation of electrostrictive effects in a twin-hole silica glass fiber,�?? J. Opt. Soc. Am. B 17, 1-5 (2000). [CrossRef]
  12. M. Abe, T. Kitagawa, K. Hattori, A. Himeno and Y. Ohmori, �??Electro-optic switch constructed with a poled silica- based waveguide on a Si substrate,�?? Electron. Lett. 32, 893, (1996). [CrossRef]
  13. Raman Kashyap, in Fiber Bragg Grating, edited by P.L.Kelly, J.Kaminow, G. P. Agrawal (Academic Press, London, 1999), 15
  14. W. Margulis, F. C. Garcia, E. N. Hering, L. C. G. Valente, B .Lesche, F. Laurell and I. C. S. Carvalho, �??Poled glasses,�?? Bull. Mat. Res. 23, 31, (1998).
  15. R. Kashyap, �??Phase-matched periodic electric-field-induced second-harmonic generation in optical fibres,�?? J. Opt. Soc. of Am. B 6, 313 (1989). [CrossRef]
  16. F. C. Garcia, E. N. Hering, I. C. S. Carvalho and W. Margulis, �??Inducing a large second-order optical nonlinearity in soft glasses by poling,�?? Appl. Phys. Lett. 72, 3252, (1998). [CrossRef]
  17. A. C. Liu, M. J. F. Digonnet, G. S. Kino and E. J. Knystautas, �??Improved nonlinear coefficient (0.7 pm/V) in silica thermally poled at high voltage and temperature,�?? Electron. Lett. 36, 555, (2000). [CrossRef]
  18. A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis and I. C. S. Carvalho, �??Depletion region in thermally poled fused silica,�?? Appl. Phys. Lett. 76, 2496, (2000). [CrossRef]
  19. J. Arentoft, M. Kristensen, J. Hubner, W. Xu and M. Bazylenko �??Poling of UV written waveguides,�?? in technical Digest of OFC, 1999, (OSA, San Diego, 1999), Paper WM19, pp. 250.
  20. D. Wong, W. Xu, S. Fleming, M. Janos and K. M. Lo, �??Frozen-in electrical field in thermally poled fibres,�?? Opt. Fib. Technol. 5, 235, (1999). [CrossRef]
  21. W. Xu, D. Wong and S. Fleming, �??Evolution of linear electro-optic coefficients and third-order nonlinearity during prolonged negative thermal poling of silica fibre,�?? Electron. Lett. 35, 922 (1999). [CrossRef]
  22. R. Kashyap, �??Why the ÷(3) of silica increases after poling,�?? Post deadline paper PD5, In Technical Digest of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides, OSA, Sept 2003.
  23. R. Kashyap, F. C. Garcia and L. Vogelaar, �??Nonlinearity of the electro-optic effect in poled waveguide,s, ibid. pp. Paper TuC2, pp. 210-212

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited