OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 23 — Nov. 17, 2003
  • pp: 3147–3152

Experimental study of the free spectral range (FSR) in FPI with a small plate gap

M. Xiang, Y. M. Cai, Y. M. Wu, J. Y. Yang, and Y. L. Wang  »View Author Affiliations


Optics Express, Vol. 11, Issue 23, pp. 3147-3152 (2003)
http://dx.doi.org/10.1364/OE.11.003147


View Full Text Article

Enhanced HTML    Acrobat PDF (94 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we investigate the variation of free spectral range (FSR) for the Fabry-Perot interferometer (FPI) consisting of mirrors with phase shift dispersion. The reflection phase shift on a mirror has been calculated employing the Transfer-Matrix Method and the values of FSR have been calculated under the condition of normal incidence of light beam. Fabry-Perot (FP) cavities have been fabricated employing bulk micromachining technology, and silicon wafers coated with multilayer dielectric films were used as mirrors. FSR of these FP cavities have been experimentally measured. The experimental data match the calculated results very well. The conclusion is that FSR shortening effect must be taken into account for the FPIs with a small plate gap, as the finesse and the tunable range of tunable FPI can be affected by the shortening effect greatly.

© 2003 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(050.5080) Diffraction and gratings : Phase shift
(260.2030) Physical optics : Dispersion

ToC Category:
Research Papers

History
Original Manuscript: September 23, 2003
Revised Manuscript: October 31, 2003
Published: November 17, 2003

Citation
Min Xiang, Y. Cai, Y. Wu, J. Yang, and Y. Wang, "Experimental study of the free spectral range (FSR) in FPI with a small plate gap," Opt. Express 11, 3147-3152 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-23-3147


Sort:  Journal  |  Reset  

References

  1. G. Hernandez, �??A high luminosity spectrometer for night airglow studies,�?? Appl. Opt. 9, 1225-1227 (1970). 2. P. B. Hays and R. G. Roble, �??A technique for recovering Doppler line profiles from Fabry-Perot interferometer fringes of very low intensity,�?? Appl. Opt. 10, 193-200 (1971). [CrossRef] [PubMed]
  2. P. B. Hays and R. G. Roble, �??A technique for recovering Doppler line profiles from Fabry-Perot interferometer fringes of very low intensity,�?? Appl. Opt. 10, 193-200 (1971). [CrossRef] [PubMed]
  3. H. F. Döbele and J. H. Massig, �??Application of a Fabry-Perot spectrometer to the measurement of spectral line shifts much smaller than line width,�?? Appl. Opt. 15, 69-72 (1976). [CrossRef] [PubMed]
  4. D. E. Wohlert, K. Y. Cheng, and S. T. Chou, �??Temperature invariant lasing and gain spectra in self-assembled GaInAs quantum wire Fabry--Perot lasers,�?? Appl. Phys. Lett. 78, 1047-1049 (2001) [CrossRef]
  5. P. D. Atherton, N. K. Reay, J. Ring, and T. R. Hicks, �??Tunable Fabry-Perot filters,�?? Opt. Engr. 20, 806-814 (1981).
  6. Yu. V. Troitski, �??Dispersion-free, multiple-beam interferometer,�?? Appl. Opt. 34, 4717-4722 (1995). [CrossRef] [PubMed]
  7. Yu. V. Troitskii, �??Interferometer for measuring ultramall displacements with a nonmonochromatic light source,�?? Sov. J. Quan. Elec. 22, 1051-1054 (1992). [CrossRef]
  8. Y. C. Lin and W. Q. Lu, Principles of Optical thin films, (National Defence Industry Industry Press of China, 1990), Chap. 2.
  9. M. Xiang, Y. M. Cai, Y. M. Wu, J. Y. Yang, and Y. L. Wang, �??A Novel Method of fabricating Fabry-Perot Cavity Employing MEMS Wet-Etching Process,�?? Asia-Pacific Optical and Wireless Communications Conference, Jim Hsieh, and Leping Wei, eds., Proc. SPIE 5279-58 (2003).
  10. M. Born and E. Wolf, Principles of Optics, (Cambridge, 1999), Chap. 7.
  11. S. R. Mallinson and J. H. Jerman, �??Miniature micromachined Fabry-Perot interferometer in silicon,�?? Electr. Lett. 23, 1041-1043 (1987). [CrossRef]
  12. A. T. T. D. Tran, Y. H. Lo, Z.H. Zhu, D. Haronian, and E. Mozdy, �??Surface micromachined Fabry-Perot tunable filter,�?? IEEE Photo. Tech. Lett. 8, 393-395 (1996). [CrossRef]
  13. C. K. Madsen, J. A. Walker, J. E. Ford, K. W. Goossen, T. N. Nielsen, and G. Lenz, �??A Tunable Dispersion Compensating MEMS All-Pass Filter,�?? IEEE Photo. Tech. Lett. 12, 651-653 (2000). [CrossRef]
  14. K. K. Lee, D. R. Lim, and L. C. Kimerling, �??Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,�?? Opt. Lett. 26, 1888-1890 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited