OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 25 — Dec. 15, 2003
  • pp: 3352–3358

Detection of three-dimensional objects under arbitrary rotations based on range images

Javier García, Jose J. Valles, and Carlos Ferreira  »View Author Affiliations

Optics Express, Vol. 11, Issue 25, pp. 3352-3358 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper a unique map or signature of three dimensional objects is defined. The map is obtained locally, for every possible rotation of the object, by the Fourier transform of the phase-encoded range-image at each specific rotation. From these local maps, a global map of orientations is built that contains the information about the surface normals of the object. The map is defined on a unit radius sphere and permits, by correlation techniques, the detection and orientation evaluation of three dimensional objects with three axis translation invariance from a single range image.

© 2003 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.5010) Fourier optics and signal processing : Pattern recognition
(100.6890) Image processing : Three-dimensional image processing

ToC Category:
Research Papers

Original Manuscript: November 7, 2003
Revised Manuscript: November 24, 2003
Published: December 15, 2003

Javier García, Jose Valles, and Carlos Ferreira, "Detection of three-dimensional objects under arbitrary rotations based on range images," Opt. Express 11, 3352-3358 (2003)

Sort:  Journal  |  Reset  


  1. R. Campbell and P. Flynn, �??A survey of free-form object representation and recognition techniques,�?? Computer Vision and Image Understanding 81 2 (2001), pp. 166�??210. [CrossRef]
  2. M. Rioux, �??Laser range finder based on synchronized scanners,�?? Appl. Opt. 23, 3837-3844 (1984). [CrossRef] [PubMed]
  3. M. Takeda and K. Mutoh, �??Fourier transform profilometry for the automatic measurement of 3-D object shapes,�?? Appl. Opt. 22, 3977-3982 (1983). [CrossRef] [PubMed]
  4. J. Rosen, �??Three-dimensional electro-optical correlation,�?? J. Opt. Soc. Am. A 15, 430-436 (1998). [CrossRef]
  5. T. Poon and T. Kim, �??Optical image recognition of three-dimensional objects,�?? Appl. Opt. 38, 370-381 (1999). [CrossRef]
  6. E. Tajahuerce, O. Matoba, and B. Javidi, �??Shift-Invariant Three-Dimensional Object Recognition by Means of Digital Holography ,�?? App. Opt. 40, 3877-3886 (2001) [CrossRef]
  7. E Paquet, H H Arsenault and M Rioux , �??Recognition of faces from range images by means of the phase Fourier transform,�?? Pure Appl. Opt. 4, 709-721 (1995) [CrossRef]
  8. P. Parrein, J. Taboury, P. Chavel, �??Evaluation of the shape conformity using correlation of range images,�?? Opt. Commun. 195 (5-6), 393-397 (2001). [CrossRef]
  9. Huber DF, Hebert M, �??Fully automatic registration of multiple 3D data sets,�?? Image And Vision Computing 21 (7): 637-650 (2003) [CrossRef]
  10. M. Rioux, P. Boulanger and T. Kasvand , �??Segmentation of range images using sine wave coding and Fourier transformation,�?? App. Opt. 26, 287-292 (1987). [CrossRef]
  11. E. Paquet, M. Rioux and H. H. Arsenault, �??Range image segmentation using the Fourier transform ,�?? Opt. Eng. 32, 2173-2180 (1994) [CrossRef]
  12. J. J. Esteve-Taboada, D. Mas, and J. García, �??Three-dimensional object recognition by Fourier transform profilometry,�?? App. Opt. 38, 4760-4765 (1999). [CrossRef]
  13. Esteve-Taboada JJ, Garcia J, Ferreira C, �??Rotation-invariant optical recognition of three-dimensional objects,�?? App. Opt. 39, 5998-6005 (2000 [CrossRef]
  14. Hsu Y., Arsenault HH, �??Optical-pattern recognition using circular harmonic expansion,�?? App. Opt. 21, 4016-4019 (1982) [CrossRef]
  15. Chang S, Rioux M, Grover CP, �??Range face recognition based on the phase Fourier transform,�?? Opt. Commun. 222, 143-153 (2003) [CrossRef]
  16. Hassebrook LG, Lhamon ME, Wang M, Chatterjee JP, �??Postprocessing of correlation for orientation estimation,�?? Opt. Eng. 36, 2710-2718 (1997) [CrossRef]
  17. J. J. Esteve-Taboada and J. García, �??Detection and orientation evaluation for three-dimensional objects,�?? Opt. Com. 217, 123-131 (2002). [CrossRef]
  18. <a href="http://scienceworld.wolfram.com/astronomy/EquatorialCoordinates.html">http://scienceworld.wolfram.com/astronomy/EquatorialCoordinates.html</a>
  19. B. D. Wandelt and K. M. Górski, �??Fast convolution on the sphere,�?? Phys. Rev. D 63, 123002 (2001). [CrossRef]
  20. J. R. Driscoll and D. M. Healy, �??Computing Fourier transforms and convolutions on the 2-Sphere,�?? Adv. In App. Math. 15, 202-250 (1994). [CrossRef]
  21. J.J.Sakurai,Modern Quantum Mechanics (Adisson-Wesley, New York, 1985), pp. 221-223

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: AVI (851 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited