OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 25 — Dec. 15, 2003
  • pp: 3438–3444

Purple membrane-polyacrilamide films as holographic recording materials

A. Fimia, P. Acebal, A. Murciano, S. Blaya, L. Carretero, M. Ulibarrena, R. Aleman, M. Gomariz, and I. Meseguer  »View Author Affiliations

Optics Express, Vol. 11, Issue 25, pp. 3438-3444 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (157 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The holographic parameters of purple membrane-polyacrylamide films obtained from a mutant form of Halobacterium salinarum (originally Halobacterium halobium) were measured. The synthesized films have an absorption of around 2.5 at 532 nm and a pH of 8.65. The results show that diffraction efficiencies of about 1.2 % (measured at 633 nm) can be achieved with writing intensities in the range of 200–400 mW/cm2 (532 nm), and these values remain constant after saturation. Pump-probe experiments were also used to measure the M state lifetime and our PM films were found to have the lowest M state lifetime described at this pH.

© 2003 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(140.3320) Lasers and laser optics : Laser cooling

ToC Category:
Research Papers

Original Manuscript: November 7, 2003
Revised Manuscript: December 3, 2003
Published: December 15, 2003

Antonio Fimia, P. Acebal, A. Murciano, S. Blaya, L. Carretero, M. Ulibarrena, R. Aleman, M. Gomariz, and I. Meseguer, "Purple membrane-polyacrilamide films as holographic recording materials," Opt. Express 11, 3438-3444 (2003)

Sort:  Journal  |  Reset  


  1. N. Hampp, A. Popp, C. Bruchle, and D. Oesterhelt, �??Diffraction efficiency of Bacteriorhodopsin Films for holography containing bacteriorhodopsin Wildtype BRWT and its variants BRD85E and BRD96N,�?? J. Phys. Chem. 96, 4679�??4685 (1992). [CrossRef]
  2. J. D. Downie and D. T. Smithey, �??Measurements of holographic properties of bacteriorhodopsin films,�?? Appl. Opt. 35, 5780�??5789 (1996). [CrossRef] [PubMed]
  3. R. R. Birge, �??Photophysics and molecular electronic applications of the rhodopsin,�?? Annu. Rev. Phys. Chem. 41, 683�??733 (1990). [CrossRef] [PubMed]
  4. A. Bablumian and T. Krile, �??Multiplexed holograms in thick bacteriorhodopsin films for optical memory/ interconnections,�?? Opt. Eng. 39(11), 2964�??2974 (2000). [CrossRef]
  5. N. Hampp, �??Bacteriorhodopsin as a photochromic retinal protein for optical memories,�?? Chem. Rev. 100, 1755�??1776 (2000). [CrossRef]
  6. O. Werner, B. Fischer, A. Lewis, and I. Nebenzahl, �??Saturable absorption, wave mixing and phase conjugation with bacteriorhodopsin,�?? Opt. Lett. 15, 1117�??1119 (1990). [CrossRef] [PubMed]
  7. N. Hampp, A. Miller, C. Bruchle, and D. Oesterhelt, �??Properties of holographic media containing purple membrane from Halobacterium halobium and its functional variants,�?? GBF Monogr. 13, 377�??383 (1989).
  8. F. Wang, L. Liu, and Q. Li, �??Readout of a real-time hologram on bacteriorhodopsin fiml with high diffraction efficiency and intensity,�?? Opt. Lett. 21, 1697�??1699 (1996). [CrossRef] [PubMed]
  9. R. Thoma, N. Hampp, C. Bruchle, and D. Oesterhelt, �??Bacteriorhodopsin films as spatial light modulators for non-linear optical filtering,�?? Opt. Lett. 16, 651�??653 (1991). [CrossRef] [PubMed]
  10. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. Birge, �??Chemically enhanced bacteriorhodopsin thin-film spatial light modulator,�?? Opt. Lett. 18, 1373�??1375 (1993). [CrossRef] [PubMed]
  11. A. Panchangam, K. Sastry, D. Rao, B. DeCristofano, B. Kimball, and M. Nakashima, �??Processing of medical images using real-time optical Fourier processing,�?? Med. Phys. 28, 22�??27 (2001). [CrossRef] [PubMed]
  12. T. Okamoto, I. Yamaguchi, S. Boothroyd, and J. Chrostwiski, �??Novelty filter that uses a bacteriorhodopsin film,�?? Appl. Opt. 508�??511 (1997). [CrossRef] [PubMed]
  13. J. Joseph, F. J. Aranda, D. Rao, J. A. Akkara, and M. Nakashima, �??Optical fourier proccesing using photoinduced dichroism in bacteriorhodopsin film,�?? Opt. Lett. 21, 1499�??1501 (1996). [CrossRef] [PubMed]
  14. P.Wu, D. R. amd B.R. Kimball, M. Nakashima, and B. DeCristofano, �??Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films,�?? Appl. Phys. Lett. 81, 3888�??3890 (2002). [CrossRef]
  15. A. Seitz and N. Hampp, �??Kinetic optimization of bacteriorhodopsin films for holographic interferometry,�?? J. Phys. Chem. B 104, 7183�??7192 (2000). [CrossRef]
  16. G. Juez and F. R. Valera, �??A mutant form of Halobacterium halobium with constitutive production of bacteriorhodopsin,�?? FEMS Microbiol. Lett. 23(2-3), 167�??170 (1984). [CrossRef]
  17. D. Oesterhelt and W. Stoeckenius, �??Isolation of the cell membrane of Halobacterium halobium and its fraction into red and purple membrane,�?? Methods Enzymology 31, 667�??678 (1974). [CrossRef]
  18. H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell. Sys. Tech. J. 48, 2909�??2945 (1969).
  19. Q. W. Song, C.-Y. Ku, C. Zhang, R. B. Gros, R. Birge, and R. Michalak, �??Modified critical angle method for measuring the refractive index of bio-optical materials and its application to bacteriorhodopsin,�?? J. Opt. Soc. Am. B 12, 797�??803 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited