OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 26 — Dec. 29, 2003
  • pp: 3568–3573

Highly nonlinear and anomalously dispersive lead silicate glass holey fibers

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R.C. Moore, K. Frampton, D.J. Richardson, and T.M. Monro  »View Author Affiliations


Optics Express, Vol. 11, Issue 26, pp. 3568-3573 (2003)
http://dx.doi.org/10.1364/OE.11.003568


View Full Text Article

Enhanced HTML    Acrobat PDF (641 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present significant progress on the fabrication of small-core lead-silicate holey fibers. The glass used in this work is SF57, a commercially available, highly nonlinear Schott glass. We report the fabrication of small core SF57 fibers with a loss as low as 2.6 dB/m at 1550 nm, and the fabrication of fibers with a nonlinear coefficient as high as 640 W-1km-1. We demonstrate the generation of Raman solitons at ~1550 nm in a short length of such a fiber which highlights the fact that the group velocity dispersion can be anomalous at these wavelengths despite the large normal material dispersion of the glass around 1550nm.

© 2003 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2290) Fiber optics and optical communications : Fiber materials
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Research Papers

History
Original Manuscript: December 1, 2003
Revised Manuscript: December 12, 2003
Published: December 29, 2003

Citation
P. Petropoulos, Heike Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. Richardson, and T. Monro, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers," Opt. Express 11, 3568-3573 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3568


Sort:  Journal  |  Reset  

References

  1. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, "Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold," IEEE Photon. Technol. Lett. 15, 440-442 (2003). [CrossRef]
  2. V. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. S. Russell, F. G. Omenetto, and A. J. Taylor, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520</a> [CrossRef] [PubMed]
  3. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded singlemode non-silica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002). [CrossRef]
  4. P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore, H. N. Rutt, and D. J. Richardson, "Soliton-self-frequency-shift effects and pulse compression in an anomalously dispersive high nonlinearity lead silicate holey fiber," presented at OFC 2003, Atlanta, Georgia, paper PD03 (Postdeadline).
  5. H. Ebendorff-Heidepriem, P. Petropoulos, V. Finazzi, K. Frampton, R. Moore, D. J. Richardson, and T. M. Monro, "Highly nonlinear bismuth-oxide-based glass holey fiber," presented at OFC 2004, Los Angeles, California, paper ThA4.
  6. V. Kumar, A. K. George, J. C. Knight, and P. S. Russell, "Tellurite hotonic crystal fiber," Opt. Express 11, 2641-2645 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2641.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2641.</a> [CrossRef] [PubMed]
  7. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000). [CrossRef]
  8. S. R. Friberg and P. W. Smith, "Nonlinear Optical-Glasses for Ultrafast Optical Switches," IEEE J. Quantum Electron. 23, 2089-2094 (1987). [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, Inc., 1995).
  10. T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, "High nonlinearity extruded single-mode holey optical fibers," presented at OFC 2002, Anaheim, California, 19-21 March 2002, paper FA1-1 (Postdeadline).
  11. E. M. Vogel, M. J. Weber, and D. M. Krol, "Nonlinear Optical Phenomena in Glass," Phys. Chem. Glasses 32, 231-254 (1991).
  12. S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, "Measurement of iscosity of multi-component glasses in the wide range for fiber drawing," J. Jpn. Inst. Met. 62, 106-110 (1998).
  13. Schott Glass Catalogue, 2003.
  14. L. Poladian, N. A. Issa, and T. M. Monro, "Fourier decomposition algorithm for leaky modes of fibres with arbitrary geometry," Opt. Express 10, 449-454 (2002), <a href="http://www opticsexpress.org/abstract.cfm?URI=OPEX-10-10-449.">http://www opticsexpress.org/abstract.cfm?URI=OPEX-10-10-449</a>. [CrossRef] [PubMed]
  15. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Holey optical fibers: An efficient modal model," J. Lightwave Technol. 17, 1093-1102 (1999). [CrossRef]
  16. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. GrunerNielsen, and O. A. Levring, "Direct continuous-wave measurement of n(2) in various types of telecommunication fiber at 1.55 mu m," Opt. Lett. 21, 1966-1968 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited