OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 26 — Dec. 29, 2003
  • pp: 3612–3621

Rotating and Fugitive Cavity Solitons in semiconductor microresonators

R. Kheradmand, L. A. Lugiato, G. Tissoni, M. Brambilla, and H. Tajalli  »View Author Affiliations


Optics Express, Vol. 11, Issue 26, pp. 3612-3621 (2003)
http://dx.doi.org/10.1364/OE.11.003612


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe two different methods that exploit the intrinsic mobility properties of cavity solitons to realize periodic motion, suitable in principle to provide soliton-based, all-optical clocking or synchronization. The first method relies on the drift of solitons in phase gradients: when the holding beam corresponds to a doughnut mode (instead of a Gaussian as usually) cavity solitons undergo a rotational motion along the annulus of the doughnut. The second makes additional use of the recently discovered spontaneous motion of cavity solitons induced by the thermal dynamics, it demonstrates that it can be controlled by introducing phase or amplitude modulations in the holding beam. Finally, we show that in presence of a weak 2D phase modulation, the cavity soliton, under the thermally induced motion, performs a random walk from one maximum of the phase profile to another, always escaping from the temperature minimum generated by the soliton itself (Fugitive Soliton).

© 2003 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.4870) Nonlinear optics : Photothermal effects

ToC Category:
Research Papers

History
Original Manuscript: October 31, 2003
Revised Manuscript: December 18, 2003
Published: December 29, 2003

Citation
R. Kheradmand, L. Lugiato, G. Tissoni, M. Brambilla, and H. Tajalli, "Rotating and Fugitive Cavity Solitons in semiconductor microresonators," Opt. Express 11, 3612-3621 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3612


Sort:  Journal  |  Reset  

References

  1. D. W. McLaughlin, J. V. Moloney and A. C. Newell, �??Solitary Waves as Fixed Points of Infinite-Dimensional Maps in an Optical Bistable Ring Cavity,�?? Phys. Rev. Lett. 51, 75-78 (1983). [CrossRef]
  2. N. N. Rosanov and G. V. Khodova, �??Autosolitons in bistable interferometers,�?? Opt. Spectrosc. 65, 449-450 (1988).
  3. G. S. McDonald, andW. J. Firth �??Spatial solitary wave optical memory,�?? J. Opt. Soc. Am. B 7, 1328-1335 (1990). [CrossRef]
  4. For review, see L. A. Lugiato, �??Introduction to the Special Issue on Cavity Solitons,�?? IEEE J. Quant. Electron.39, 193 (2003) [CrossRef]
  5. For review, see W. J. Firth and G. K. Harkness, �??Existence, Stability and Properties of Cavity Solitons,�?? in �??Spatial Solitons,�?? Springer Series in Optical Sciences Vol. 82, eds. S. Trillo and W. Torruellas, pp. 343-358 (Springer Velag, 2002).
  6. W. J. Firth and A. J. Scroggie, �??Optical bullet holes: robust controllable localized states of a nonlinear cavity,�?? Phys. Rev. Lett. 76, 1623-1626 (1996). [CrossRef] [PubMed]
  7. M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli andW. J. Firth,�??Spatial soliton pixels in semiconductor devices,�?? Phys. Rev. Lett. 79, 2042 (1997). [CrossRef]
  8. D. Michaelis, U. Peschel and F. Lederer, �??Multistable localized structures and superlattices in semiconductor optical resonators,�?? Phys. Rev. A 56, R3366-R3369 (1997). [CrossRef]
  9. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati and L. A. Lugiato, �??Spatial solitons in semiconductor microcavities,�?? Phys. Rev. A 58, 2542-2559 (1998) and references quoted therein. [CrossRef]
  10. G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini and L. A. Lugiato, �??Cavity solitons in passive bulk semiconductor microcavities. I. Microscopic model and modulational instabilities,�?? J. Opt. Soc. Am. B 16, 2083 (1999). [CrossRef]
  11. L. Spinelli, G. Tissoni, M. Tarenghi and M. Brambilla, �??First principle theory for cavity solitons in semiconductor microresonators,�?? Eur. Phys. J. D 15, 257-266 (2001) and references quoted therein. [CrossRef]
  12. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller and R. Jaeger,�??Cavity Solitons as pixels in semiconductor microcavities,�?? Nature 419, 699-702 (2002). [CrossRef] [PubMed]
  13. L. Spinelli, G. Tissoni, L. A. Lugiato and M. Brambilla, �??Thermal effects and transverse structures in semiconductor microcavities with population inversion,�?? Phys. Rev. A 66, 023817 (2002) [CrossRef]
  14. A. J. Scroggie, J. M. McSloy, and W. J. Firth, �??Self-propelled cavity solitons in semiconductor microcavities,�?? Phys. Rev. E 66, 036607 (2002). [CrossRef]
  15. G. Tissoni, L. Spinelli and L. A. Lugiato,�??Spatio-temporal dynamics in semiconductor microresonators with thermal effects,�?? Opt. Ex. 10, 1009 (2002). [CrossRef]
  16. I. M. Perrini, G. Tissoni, T. Maggipinto, and M. Brambilla, �??Thermal effects and cavity solitons in passive semiconductor microresonators,�?? submitted to J. Opt. B (2003).
  17. D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G-L. Oppo, U. Peschel and F. Lederer, �??Perturbation Theory for Domain Walls in the Parametric Ginzburg-Landau Equation,�?? Phys. Rev. E 64, 56618-1-9 (2001). [CrossRef]
  18. L. Allen, M.W. Beijersbergen, R. J. C. Spreuw and J. P.Woerdman, �??Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,�?? Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  19. L. Allen, S. M. Barnett and M. J. Padgett, �??Optical angular Momentum,�?? Institute of Physics Publishing, Bristol, (2003).
  20. B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz and R. Azoulay, �??High contrast multiple quantum well optical bistable device with integrated Bragg reflectors,�?? Appl. Phys. Lett. 57, 324 (1990). [CrossRef]
  21. W. J. Firth and G. Harkness, �??Cavity Solitons,�?? Asian J. Phys. 7, 665-677 (1998).
  22. G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, I. Perrini and L. A. Lugiato, �??Cavity solitons in passive bulk semiconductor microcavities. II. Dynamical proprties and control,�?? J. Opt. Soc. Am. B 16, 2095 (1999). [CrossRef]
  23. T. Maggipinto, M. Brambilla, G. K. Harkness and W. J. Firth, �??Cavity Solitons in Semiconductor Microresonators: Existence, Stability and Dynamical Properties,�?? Phys Rev E 62, 8726-8739 (2000). [CrossRef]
  24. G-L. Oppo, A. J. Scroggie and W. J. Firth, �??Characterization, Dynamics and Stabilization of Diffractive Domain Walls and Dark Ring Cavity Solitons in Optical Parametric Oscillators,�?? Phys Rev E 63 066209-1/15 (2001). [CrossRef]
  25. M. Tlidi, P. Mandel and R. Lefever, �??Localized structures and localized patterns in optical bistability,�?? Phys. Rev. Lett. 73, 640-643 (1994).
  26. B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz and R. Azoulay, �??External-beam switching in monolithic bistable GaAs quantum well etalons,�?? Appl. Phys. Lett. 57, 1849 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (545 KB)     
» Media 2: MPG (981 KB)     
» Media 3: MPG (140 KB)     
» Media 4: MPG (249 KB)     
» Media 5: MPG (1289 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited