OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 26 — Dec. 29, 2003
  • pp: 3628–3648

Probability-density function for energy perturbations of isolated optical pulses

C. J. McKinstrie and T. I. Lakoba  »View Author Affiliations

Optics Express, Vol. 11, Issue 26, pp. 3628-3648 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The mathematical methods required to model simple stochastic processes are reviewed briefly. These methods are used to determine the probability-density function (PDF) for noise-induced energy perturbations of isolated (solitary) optical pulses in fiber communication systems. The analytical formula is consistent with the numerical solution of the energy-moment equation. System failures are caused by large energy perturbations. For such perturbations the actual PDF differs significantly from the (ideal-ized) Gauss PDF that is often used to predict system performance.

© 2003 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Research Papers

Original Manuscript: September 9, 2003
Revised Manuscript: December 22, 2003
Published: December 29, 2003

C. McKinstrie and T. Lakoba, "Probability-density function for energy perturbations of isolated optical pulses," Opt. Express 11, 3628-3648 (2003)

Sort:  Journal  |  Reset  


  1. L. F. Mollenauer, J. P. Gordon and P. V. Mamyshev, �??Solitons in high bit-rate, long-distance transmission,�?? in Optical Fiber Telecommunications IIIA, edited by I. P. Kaminow and T. L. Koch (Academic, San Diego, 1997), pp. 373�??460.
  2. E. Iannone, F. Matera, A. Mecozzi and M. Settembre, Nonlinear Optical Communications Networks (Wiley, New York, 1998).
  3. K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, S. Kuroda and T. Misuochi, �??A comparative study of 10 Gb/s RZ-DPSK and RZ-ASK WDM transmission over transoceanic distances,�?? OFC (Optical Society of America, Washington, D.C., 2003) paper ThE2.
  4. J. X. Cai, D. G. Foursa, C. R. Davidson, Y. Cai, G. Domagala, H. Li, L. Liu, W. W. Patterson, A. N. Pilipetskii, M. Nissov and N. S. Bergano, �??A DWDM demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK channels at 10 Gb/s,�?? OFC (Optical Society of America, Washington, D.C., 2003) paper PD22.
  5. J. P. Gordon and H. A. Haus, �??Random walk of coherently amplified solitons in optical fiber transmission,�?? Opt. Lett. 11, 665�??667 (1986). [CrossRef] [PubMed]
  6. C. J. McKinstrie, �??Gordon�??Haus timing jitter in dispersion-managed systems with distributed amplification,�?? Opt. Commun. 200, 165�??177 (2001) and references therein. [CrossRef]
  7. J. P. Gordon and L. F. Mollenauer, �??Phase noise in photonic communication systems using linear amplifiers,�?? Opt. Lett. 23, 1351�??1353 (1990). [CrossRef]
  8. C. J. McKinstrie, C. Xie and T. I. Lakoba, �??Efficient modeling of phase jitter in dispersion-managed soliton systems,�?? Opt. Lett. 27, 1887�??1889 (2002) and references therein. [CrossRef]
  9. S. N. Vlasov, V. A. Petrishchev and V. I. Talanov, �??Averaged dersciption of wave beams in linear and nonlinear media,�?? Radiophys. Quantum Electron. 14, 1062�??1070 (1971). [CrossRef]
  10. W. J. Firth, �??Propagation of laser beams through inhomogeneous media,�?? Opt. Commun. 22, 226�??230 (1977). [CrossRef]
  11. D. Anderson, �??Variational approach to pulse propagation in optical fibers,�?? Phys. Rev. A 27, 3135�??3145 (1983). [CrossRef]
  12. D. J. Kaup, �??Perturbation theory for solitons in optical fibers,�?? Phys. Rev. A 42, 5689�??5694 (1990). [CrossRef] [PubMed]
  13. H. A. Haus and Y. Lai, �??Quantum theory of soliton squeezing: a linearized approach,�?? J. Opt. Soc. Am. B 7, 386�??392 (1990). [CrossRef]
  14. D. Marcuse, �??Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers,�?? J. Lightwave Technol. 8, 1816�??1823 (1990). [CrossRef]
  15. J. P. Gordon and L. F. Mollenauer, �??Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission,�?? J. Lightwave Technol. 9, 170�??173 (1991). [CrossRef]
  16. P. A. Humblet and M. Azizoglu, �??On the bit error rate of lightwave systems with optical amplifiers,�?? J. Lightwave Technol. 9, 1576�??1582 (1991). [CrossRef]
  17. J. S. Lee and C. S. Shim, �??Bit-error-rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain,�?? J. Lightwave Technol. 12, 1224�??1229 (1994). [CrossRef]
  18. T. Yoshino and G. P. Agrawal, �??Photoelectron statistics of solitons corrupted by amplified spontaneous emission,�?? Phys. Rev. A 51, 1662�??1668 (1995). [CrossRef] [PubMed]
  19. B. A. Malomed and N. Flytzanis, �??Fluctuational distribution function of solitons in the nonlinear Schrodinger system,�?? Phys. Rev. E 48, R5�??R8 (1993). [CrossRef]
  20. G. E. Falkovich, I. Kolokolov, V. Lebedev and S. K. Turitsyn, �??Statistics of soliton-bearing systems with additive noise,�?? Phys. Rev. E 63, 25601R (2001). [CrossRef]
  21. R. Holzlohner, V. S. Grigoryan, C. R. Menyuk and W. L. Kath, �??Accurate calculation of eye diagrams and bit error rates in optical transmission systems using linearization,�?? J. Lightwave Technol. 20, 389�??400 (2002). [CrossRef]
  22. R. O. Moore, G. Biondini and W. L. Kath, �??Importance sampling for noise-induced amplitude and timing jitter in soliton transmission systems,�?? Opt. Lett. 28, 105�??107 (2003). [CrossRef] [PubMed]
  23. C. J. McKinstrie and P. J. Winzer, �??How to apply importance-sampling techniques to simulations of optical systems,�?? <a href="http://arxiv.org/physics/0309002">http://arxiv.org/physics/0309002</a>.
  24. H. Kim and A. H. Gnauck, �??Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise,�?? IEEE Photon. Technol. Lett. 15, 320�??322 (2003). [CrossRef]
  25. C. W. Gardiner, Handbook of Stochastic Methods, 2nd Ed. (Springer, Berlin, 2002).
  26. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  27. J. G. Proakis, Digital Communications, 3rd Ed. (McGraw-Hill, New York, 1995).
  28. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), result 29.3.81.
  29. W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1983), Sections 5.5 and 6.7.
  30. R. Graham, �??Hopf bifurcation with fluctuating control parameter,�?? Phys. Rev. A 25, 3234�??3258 (1982). [CrossRef]
  31. R. Graham and A. Schenzle, �??Carleman imbedding of multiplicative stochastic processes,�?? Phys. Rev. A 25, 1731�??1754 (1982). [CrossRef]
  32. I. S. Gradsteyn and I. M. Rhyzhik, Table of Integrals, Series and Products, 5th Ed. (Academic, San Diego, 1994), result 6.633.2.
  33. P. J.Winzer, S. Chandrasekhar and H. Kim, �??Impact of filtering on RZ-DPSK reception,�?? IEEE Photon. Technol. Lett. 15, 840�??842 (2003) and references therein. [CrossRef]
  34. J. D. Hoffman, Numerical Methods for Scientists and Engineers (McGraw-Hill, New York, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited