OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 3 — Feb. 10, 2003
  • pp: 208–214

Shack-Hartmann multiple-beam optical tweezers

Peter John Rodrigo, René Lynge Eriksen, Vincent Ricardo Daria, and Jesper Glückstad  »View Author Affiliations

Optics Express, Vol. 11, Issue 3, pp. 208-214 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a new method for generating an array of programmable optical tweezers based on the principle of the Shack-Hartmann wave front sensor. In this approach, a lenslet array divides a laser beam into multiple point sources that are subsequently imaged onto the sample plane of an inverted microscope. This results in a matrix of tightly focused beams used for local confinement and manipulation of micron-sized dielectric particles in an aqueous solution. Using a spatial light-modulating device, the phase profile of the laser beam is computer-encoded providing for controlled spatial deflections of the trapping beams.

© 2003 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Research Papers

Original Manuscript: January 7, 2003
Revised Manuscript: January 27, 2003
Published: February 10, 2003

Peter Rodrigo, Rene Eriksen, Vincent Daria, and Jesper Glueckstad, "Shack-Hartmann multiple-beam optical tweezers," Opt. Express 11, 208-214 (2003)

Sort:  Journal  |  Reset  


  1. A. Ashikin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11, 288 (1986). [CrossRef]
  2. R. V. Shack and B. C. Platt, �??Production and use of a lenticular Hartmann screen,�?? J. Opt. Soc. Am. 61, 656 (1971).
  3. S. M. Block, H. C. Blair, and H. C. Berg, �??Compliance of bacterial flagella measured with optical tweezers,�?? Nature 338, 514 (1989). [CrossRef] [PubMed]
  4. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, �??Stretching DNA with optical tweezers,�?? Biophysics J. 72, 1335 (1997). [CrossRef]
  5. A. Terray, J. Oakey, and D. W. M. Marr, �??Microfluidic control using colloidal devices,�?? Science 296, 1841 (2002). [CrossRef] [PubMed]
  6. J. G. Allen, A. Vankevics, D. Wormell, and L. Schmutz, �??Digital wavefront sensor for astronomical image compensation,�?? Proc. SPIE 739, 124, (1987).
  7. J. D. Mansell, et al., �??Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,�?? Appl. Opt. 40, 366 (2001), [CrossRef]
  8. R. K. Tyson, Principles of Adaptive Optics 2nd Ed. (Academic Press, 1998).
  9. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, �??Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor,�?? J. Opt. Soc. Am. A 11, 1949 (1994). [CrossRef]
  10. M. Reicherter, T. Haist, E. U. Wagemann and H. J. Tiziani, "Optical particle trapping with computergenerated holograms written on a liquid-crystal display,�?? Opt. Lett. 24, 608 (1999). [CrossRef]
  11. R. L. Eriksen, V. R. Daria and J. Glückstad, �??Fully dynamic multiple-beam optical tweezers,�?? Opt. Express 10, 597 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597</a>. [CrossRef] [PubMed]
  12. P. J. Rodrigo, R. L. Eriksen, V. R. Daria and J. Glückstad, "Interactive light-driven and parallel manipulation of inhomogeneous particles,�?? Opt. Express 10, 1550 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1550</a>. [CrossRef] [PubMed]
  13. Y. Ogura, K. Kagawa, and J. Tanida,"Optical manipulation of microscopic objects by means of verticalcavity surface-emitting laser array sources,�?? Appl. Opt. 40, 5430 (2001). [CrossRef]
  14. G. D. Love, J. V. Major, and A. Purvis, �??Liquid-crystal prisms for tip-tilt adaptive optics,�?? Opt. Lett. 19, 1170 (1994). [CrossRef] [PubMed]
  15. S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, �??Dependence of optical properties on the device and material parameters in liquid crystal microlenses,�?? Jpn. J. Appl. Phys. 35, 4668 (1996). [CrossRef]
  16. S. Sinzinger and J. Jahns. Microoptics (Wiley-VCH, 1991).
  17. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, �??A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,�?? Biophys. J. 76, 1145 (1999). [CrossRef] [PubMed]
  18. J. P. Hoogenboom, et al., "Patterning surfaces with colloidal particles using optical tweezers,�?? Appl. Phys. Lett. 80, 4828 (2002). [CrossRef]
  19. R. Dumke, et al., "Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,�?? Phys. Rev. Lett. 89, 097903 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (1738 KB)     
» Media 2: MPG (1888 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited