OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 4 — Feb. 24, 2003
  • pp: 317–323

Synthesis of 2-dimensional photonic crystals

Caihua Chen, Ahmed Sharkway, Shouyuan Shi, and Dennis W. Prather  »View Author Affiliations


Optics Express, Vol. 11, Issue 4, pp. 317-323 (2003)
http://dx.doi.org/10.1364/OE.11.000317


View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a procedure for optimizing two-dimensional (2D) Photonic Band Gap (PBG) structures. The procedure discretizes the unit cell of a PBG structure into a binary cell and uses Direct Binary Search to search through a terrain of possible solutions in order to find a more optimal one. This process is designed either for improving the absolute band gap or opening a new one, for a predefined PBG structure. By applying the procedure on a honeycomb array of high dielectric objects in an air background, we increased its Maximum Absolute Gap-to-Midgap Ratio (MAGTMR) to more than twice that of the initial structure. To further prove the utility of this procedure, we also present other examples.

© 2003 Optical Society of America

OCIS Codes
(000.0000) General : General
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Research Papers

History
Original Manuscript: January 14, 2003
Revised Manuscript: February 11, 2003
Published: February 24, 2003

Citation
Caihua Chen, Ahmed Sharkway, Shouyuan Shi, and Dennis Prather, "Synthesis of 2-dimensional photonic crystals," Opt. Express 11, 317-323 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-4-317


Sort:  Journal  |  Reset  

References

  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987). [CrossRef] [PubMed]
  2. J. D.Joannopoulos, R. D.Meade, and J. N.Winn, Photonic Crystals:Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).
  3. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059 (1987). [CrossRef] [PubMed]
  4. A. R.McGurn, "Photonic crystal circuits: A theory for two- and three-dimensional networks," Phys. Rev. B 61, 13235 (2000). [CrossRef]
  5. M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahashi, T. Kawashima, and S. Kawakami, "Si-based photonic crystals and photonic-bandgap waveguides," IEICE Trans. Electro. E85C, 1025 (2002).
  6. S. John and M. Florescu, "Photonic bandgap materials:towards an all-optical micro-transistor," J. Opt. A:Pure Appl. Opt. 3, S103 (2001). [CrossRef]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P.D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819 (1999). [CrossRef] [PubMed]
  8. B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic Crystal-based resonant antenna with a very high directivity," J. Appl. Phys. 87, 603 (2000). [CrossRef]
  9. A. Ferrando and J. J. Miret, "Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers," Appl. Phy. Lett. 78, 3184 (2001). [CrossRef]
  10. K. Nam, "Photonic Crystals," <a href="http://www.phys.ksu.edu/~namkv/photonic.html">http://www.phys.ksu.edu/~namkv/photonic.html</a>.
  11. J. Moosburger, M. Kamp, F. Klopf, M. Fischer, and A. Forchel, "Fabrication of semiconductor lasers with 2Dphotonic crystal mirrors using a wet oxidized Al2O3-mask," Microelectron. Eng. 57, 1017 (2001). [CrossRef]
  12. T. D. Happ, A. Markard, M. Kamp, J. L. Gentner, and A. Forchel, "Short cavity InP-lasers with 2D photonic crystal mirrors," presented at Optoelectronics, 2001.
  13. J. S. Shirk, R. G. S. Pong, S. R. Flom, and E. A. Bolden, "Nonlinear 2-d Photonic Crystals for Optical Limiting," <a href="http://www.ee.ucla.edu/~pbmuri/1999-review/shirk/">http://www.ee.ucla.edu/~pbmuri/1999-review/shirk/</a>.
  14. M. Imada, S. Noda, A. Chutinan, M. Mochizuk, and T. Tanaka, "Channel Drop Filter Using a Single Defect in a 2-D Photonic Crystal Slab Waveguide," J. Lightwave Technol. 20, 873 (2002). [CrossRef]
  15. M. Florescu and S. John, "Single-atom switching in photonic crystals," Phys. Rev. A 64, 033801 (2001). [CrossRef]
  16. Z. Li, J. Wang, and B. Gu, "Creation of partial band gaps in anisotropic photonic-band-gap structures," Phys. Rev. B 58, 3721 (1998). [CrossRef]
  17. Z. Li, B. Gu, and G. Yang, "Large Absolute Band Gap in 2D Anisotropic Photonic Crystals," Phys. Rev. Lett. 81, 2574 (1998). [CrossRef]
  18. C. S. Kee, J. E. Kim, and H. Y. Park, "Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air," Phys. Rev. E 56, 6291 (1997). [CrossRef]
  19. D. Cassagne, C. Jouanin, and D. Bertho, "Hexagonal photonic-band-gap structures," Phys. Rev. B 53, 7134 (1996). [CrossRef]
  20. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295 (1991). [CrossRef] [PubMed]
  21. F. Gadot, A. Chelnokov, A. D. Lustrac, P. Crozat, J.-M. Lourtioz, D. Cassagne, and C. Jouanin, "Experimental demonstration of complete photonic band gap in graphite structure," Appl. Phys. Lett. 71, 1780 (1997). [CrossRef]
  22. P. R. Villeneuve and M. Piche, "Photonic band gaps in two-dimensional square and hexagonal lattices," Phys. Rev. B 46, 4969 (1992). [CrossRef]
  23. W. H. R.Hillebrand, and W.Harms, "Theoretical Band Gap Studies of Two-Dimensional Photonic Crystals with Varying Column Roundness," Phys. Stat. Sol. 217, 981 (2000). [CrossRef]
  24. X. Wang, B. Gu, Z. Li, and G. Yang, "Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices," Phys. Rev. B 60, 11417 (1999). [CrossRef]
  25. R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, "Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals," J. Appl. Phys. 90, 4307 (2001). [CrossRef]
  26. P. R. Villeneuve and M. Piche, "Photonic band gaps in two-dimensional square lattices: Square and circular rods," Phys. Rev. B 46, 4973 (1992). [CrossRef]
  27. C. M. Anderson and K. P. Giapis, "Symmetry reduction in grounp 4mm Photonic crystals," Phys. Rev. B 56, 7313 (1997). [CrossRef]
  28. C. M. Anderson and K. P. Giapis, "Larger Two-Dimensional Photonic Band Gaps," Phys. Rev. Lett. 77, 2949 (1996). [CrossRef] [PubMed]
  29. M. Qiu and S. He, "Large Complete band gap in two-dimensional photonic crystals with elliptic air holes," Phys. Rev. B 60, 10610 (1999). [CrossRef]
  30. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett. 61, 495 (1992). [CrossRef]
  31. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152 (1990). [CrossRef] [PubMed]
  32. K. M. Leung and Y. F. Liu, "Full Vector Wave Calculation of Photonic Band Structures in Face-Centered-Cubic Dielectric Media," Phys. Rev. Lett. 65, 2646 (1990). [CrossRef] [PubMed]
  33. C. Lemmi, S. Ledesma, J. Campos, and M. Villarreal, "Gray-level computer-generated hologram filters for multiple-object correlation," Appl. Opt. 39, 1233 (2000). [CrossRef]
  34. V. Boutenko and R. Chevallier, "Second order direct binary search algorithm for the synthesis of computergenerated holograms," Opt. Commun. 125, 43 (1996). [CrossRef]
  35. N. Wang, Y. Chen, Z. Nakao, S.Tamura, and H. Aritome, "Sythesis of Binary Computer-generated holograms based on a coding and frequency domain optimization algorithm," International J. Optoelectronics 12, 69 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited