OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 4 — Feb. 24, 2003
  • pp: 324–338

Broadband sum frequency mixing using noncollinear angularly dispersed geometry for indirect phase control of sub-20-femtosecond UV pulses

Yasuo Nabekawa and Katsumi Midorikawa  »View Author Affiliations


Optics Express, Vol. 11, Issue 4, pp. 324-338 (2003)
http://dx.doi.org/10.1364/OE.11.000324


View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a novel scheme for generating a broad spectrum in the UV region. This scheme enables us to control the phase of the UV pulse through a frequency-mixing process in a nonlinear crystal. For group velocity matching, it is essential that a monochromatic beam should be sum-frequency mixed with an angularly dispersed beam having a broad spectrum in noncollinear geometry. We found analytically unique solutions for a noncollinear angle, for an angular dispersion of the broadband input beam, and for an angle of the beam from the optical axis in a nonlinear crystal, with the condition that there is no angular dispersion in the output beam. Based on the analysis of this scheme, we obtained UV pulses with a sufficiently broad spectrum for obtaining a sub-20-fs pulsewidths in the experiment. The improvement of conversion efficiency and compensation of chirp are also discussed.

© 2003 Optical Society of America

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(190.2620) Nonlinear optics : Harmonic generation and mixing
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Research Papers

History
Original Manuscript: January 21, 2003
Revised Manuscript: February 7, 2003
Published: February 24, 2003

Citation
Yasuo Nabekawa and Katsumi Midorikawa, "Broadband sum frequency mixing using noncollinear angularly dispersed geometry for indirect phase control of sub-20-femtosecond UV pulses," Opt. Express 11, 324-338 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-4-324


Sort:  Journal  |  Reset  

References

  1. N. Dudovich, B. Dayan, S. M. Gallagher, and Y. Silberberg, �??Transform-Limited Pulses Are Not Optimal for Resonant Mutiphoton Transition,�?? Phys. Rev. Lett. 86, 47�??50 (2001). [CrossRef] [PubMed]
  2. J. Degert, W. Wohlleben, B. Chatel, M. Motzkus, and B. Girard, �??Realization of a Time-Domain Frensel Lens with Coherent Control,�?? Phys. Rev. Lett. 89, 203003�??1�?? 203003�??4 (2002). [CrossRef] [PubMed]
  3. A. M. Weiner, �??Femtosecond pulse shaping using spatial light modulators,�?? Rev. Sci. Instrum. 71, 1929�??1960 (2000). [CrossRef]
  4. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, �??Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,�?? Opt. Lett. 25, 575�??577 (2000). [CrossRef]
  5. M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, �??Frequency doubling of phase-modulated, ultrashort laser pulses,�?? Appl. Phys. B 73, 273�?? 277 (2001).
  6. M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, �??Programmable femtosecond laser pulses in the ultraviolet,�?? J. Opt. Soc. Am. B 18, 866�?? 871 (2001). [CrossRef]
  7. A. Suda, Y. Oishi, K. Nagasaka, P. Wang, and K. Midorikawa, �??A spatial light modulator based on fused-silica plates for adaptive feedback control of intense femtosecond laser pulses,�?? Opt. Express 9, 2�?? 6 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-1-2">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-1-2</a> [CrossRef]
  8. A. Balt¡uska and T. Kobayashi, �??Adaptive shaping of two-cycle visible pulses using a flexible mirror,�?? Appl. Phys. B 75, 427�?? 443 (2002). [CrossRef]
  9. H.-S. Tan, E. Schreiber, and W. S. Warren, �??High-resolution indirect pulse shaping by parametric transfer,�?? Opt. Lett. 27, 439�?? 441 (2002). [CrossRef]
  10. A. Dubeitis, G. Jonasauskas, and A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric ampli.cation in BBO crystal,�?? Opt. Commun. 88, 437�??440 (1992). [CrossRef]
  11. G. Szabo and Z. Bor, �??Frequency Conversion of Ultrashort Pulses,�?? Appl. Phys. B 58, 237�?? 241 (1994). [CrossRef]
  12. S. Saikan, D. Ouw, and F. P. Schafer, �??Automatic phase-matched frequency-doubling system for the 240�??350-nm region,�?? Appl. Opt. 18, 193�?? 196 (1979). [CrossRef] [PubMed]
  13. G. Szabo and Z. Bor, �??Broadband Frequency Doubler for Femtosecond Pulses,�?? Appl. Phys. B 50, 51�?? 54 (1990). [CrossRef]
  14. R. A. Cheville, M. T. Reiten, and N. J. Halas, �??Wide-bandwidth frequency doubling with high conversion e.ciency,�?? Opt. Lett. 17, 1343�?? 1345 (1992). [CrossRef] [PubMed]
  15. B. A. Richman, S. E. Bisson, R. Trebino, E. Sidick, and A. Jacobson, �??All-prism achromatic phase matching for tunable second-harmonic generation,�?? Appl. Opt. 38, 3316�?? 3323 (1999). [CrossRef]
  16. T. Nakajima and K. Miyazaki, �??Spectrally compensated third harmonic generation using angular dispersers,�?? Opt. Commun. 163, 217�?? 222 (1999). [CrossRef]
  17. K. Osvay and I. N. Ross, �??Broadband sum-frequency mixing by chirp-assisted group-velocity matching,�?? J. Opt. Soc. Am. B 13, 1431�?? 1438 (1996). [CrossRef]
  18. T. Hofmann, K. Mossavi, F. K. Tittel, and G. Szabo, �??Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193 nm,�?? Opt. Lett. 17, 1691�?? 1693 (1992). [CrossRef]
  19. T. Wilhelm, J. Piel, and E. Riedle, �??Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter,�?? Opt. Lett. 22, 1494�?? 1496 (1997). [CrossRef]
  20. I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, �??Analysis and optimization of optical parametric chirped pulse ampli.cation,�?? J. Opt. Soc. Am. B 19, 2945�?? 2956 (2002). [CrossRef]
  21. Y. Nabekawa, Y. Shimizu, and K. Midorikawa, �??Sub-20-fs terawatt-class laser system with a mirrorless regenerative ampli.er and an adaptive phase controller,�?? Opt. Lett. 27, 1265�??1267 (2002). [CrossRef]
  22. Y. Nabekawa, K. Kondo, N. Sarukura, K. Sajiki, and S. Watanabe, �??Terrawatt KrF/Ti:sapphire hybrid laser system,�?? Opt. Lett. 22, 1922�??1924 (1993). [CrossRef]
  23. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, �??Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,�?? Opt. Lett. 19, 1538�??1540 (1994). [CrossRef] [PubMed]
  24. Y. Nabekawa, D. Yoshitomi, T. Sekikawa, and S. Watanabe, �??High-Average-Power Femtosecond KrF Excimer Laser,�?? IEEE J. Select. Topics Quantum Electron. 7, 551�??558 (2001). [CrossRef]
  25. K. Kato, �??Second-Harmonic Generation to 2048 ªA in β-BaB2O4,�?? IEEE J. Quantum Electron. 22, 1013�??1014 (1986). [CrossRef]
  26. D. Eimerl, L. Davis, S. Velsco, E. K. Graham, and A. Zalkin, �??Optical, mechanical, and thermal properties of barium borate,�?? J. Appl. Phys. 62, 1968�??1983 (1987). [CrossRef]
  27. K. Varju, A. P. Kovacs, G. Kurdi, and K. Osvay, �??High-precision measurement of angular dispersion in a cpa laser,�?? Appl. Phys. B [Suppl.], 74, S259�??S263 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited