OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 4 — Feb. 24, 2003
  • pp: 392–405

Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography

Simonetta Grilli, Pietro Ferraro, Sergio De Nicola, Andrea Finizio, Giovanni Pierattini, Paolo De Natale, and Marco Chiarini  »View Author Affiliations

Optics Express, Vol. 11, Issue 4, pp. 392-405 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (2443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate fabrication of periodically poled lithium niobate samples by electric field poling, after patterning by interference lithography. Furthermore we investigate the poling process at an overpoling regime which caused the appearance of submicron dot domains very similar to those induced by backswitch but different in nature. We show the possibility for realizing submicron-scaled three-dimensional domain patterns that could be applied to the construction of photonic crystals and in nonlinear optics. We show that high etch-rate applied to such structures allows to obtain pyramidal-like submicron relief structures which in principle could find application for waveguide construction in photonic bandgap devices.

© 2002 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.3730) Materials : Lithium niobate

ToC Category:
Research Papers

Original Manuscript: December 23, 2002
Revised Manuscript: February 18, 2003
Published: February 24, 2003

Simonetta Grilli, Pietro Ferraro, Sergio De Nicola, Andrea Finizio, Giovanni Pierattini, Paolo De Natale, and Marco Chiarini, "Investigation on reversed domain structures in lithium niobate crystals patterned by interference lithography," Opt. Express 11, 392-405 (2003)

Sort:  Journal  |  Reset  


  1. J. Webjörn, F. Laurell, G. Arvidsson, �??Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation,�?? IEEE J. Lightwave Technol. 7, 1597-1600 (1989). [CrossRef]
  2. E.J. Lim, M.M. Fejer, R.L. Byer, and W.J. Kozlovsky, �??Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,�?? Electron. Lett. 25, 731-732 (1989). [CrossRef]
  3. D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, �??An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,�?? IEEE J. Lightwave Technol. 12, 1092-1098 (1994). [CrossRef]
  4. W.K. Burns, W. McElhanon, and L. Goldberg, �??Second Harmonic Generation in Field Poled, Quasi-Phase-Matched, Bulk LiNbO3,�?? IEEE Photon. Technol. Lett. 6, 252-254 (1994). [CrossRef]
  5. E.J. Lim, M.M. Fejer and R.L. Byer, �??Second-harmonic generation of green light in periodically poled planar Lithium Niobate waveguide,�?? Electron. Lett. 25, 174-175 (1989). [CrossRef]
  6. M. Yamada and K. Kishima, �??Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,�?? Electron. Lett. 27, 828-829 (1991). [CrossRef]
  7. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435-436 (1993). [CrossRef]
  8. J. Webjörn, V. Pruneri, P.St.J. Russell, J.R.M. Barr and D.C. Hanna, �??Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,�?? Electron. Lett. 30, 894-895 (1994). [CrossRef]
  9. V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr and D.C. Hanna, �??Intracavity second harmonic generation of 0.532 m in bulk periodically poled lithium niobate,�?? Opt. Commun. 116, 159-162 (1995). [CrossRef]
  10. G.D. Miller, R.G. Batchko, M.M. Fejer, R.L. Byer, �??Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,�?? SPIE 2700, 34-36 (1996). [CrossRef]
  11. M.J . Missey, S. Russell, V. Dominic, R. G. Batchko, K. L. Schepler, �??Real-time visualization of domain formation in periodically poled lithium niobate,�?? Opt. Express 6, 186-195 (2000). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-10-186">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-10-186</a> [CrossRef] [PubMed]
  12. M. Reich, F. Korte, C. Gallnich, H. Welling and A. Tünnermann, �??Electrode geometries for periodic poling of ferroelectric materials,�?? Opt. Lett. 23, 1817-1819 (1998). [CrossRef]
  13. G.D.Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, R.L. Byer, �??42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,�?? Opt. Lett. 22, 1834-1836 (1997). [CrossRef]
  14. R.G. Batchko, V.Y. Shur, M.M. Fejer, and R.L. Byer, �??Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,�?? Appl. Phys. Lett. 75, 1673-1675 (1999). [CrossRef]
  15. P.T. Brown, G.W. Ross, R.W. Eason and A.R. Pogosyan, �??Control of domain structures in lithium tantalite using interferometric optical patterning,�?? Opt. Commun. 163, 310-316 (1990). [CrossRef]
  16. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, �??Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,�?? J. Opt. Soc. Am. B 12, 2102-2116 (1995). [CrossRef]
  17. R.G. Batchko, M.M. Fejer, R.L. Byer, D. Woll, R. Wallenstein, V.Y. Shur, L. Erman, �??Continuous-wave quasi-phase-matched generation of 60mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,�?? Opt. Lett. 24, 1293-1295 (1999). [CrossRef]
  18. I.E.Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, G. Cook, �??Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,�?? Materials Lett. 37, 246-254 (1998). [CrossRef]
  19. P.T. Brown, S. Mailis, I. Zergioti, R.W. Eason, �??Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics,�?? Opt. Mat. 20, 125-134 (2002). [CrossRef]
  20. I.E. Barry, �??Microstructuring of lithium niobate,�?? PhD research thesis, Optoelectronics Research Centre, Faculty of Science, University of Southampton (2000).
  21. J.P. Spallas, A.M. Hawryluk, and D.R. Kania, �??Field emitter array mask patterning using laser interference lithography,�?? J. Vac. Sci. Technol. B 13, 1973-1978 (1995). [CrossRef]
  22. M.L. Schattenburg, R.J. Aucoin, and R.C. Fleming, �??Optically matched trilevel resist process for nanostructure fabrication,�?? J. Vac. Sci. Technol. B 13, 3007-3011 (1995). [CrossRef]
  23. J.A. Mitchell, �??Fabrication and characterization of quasi-phase-matched nonlinear optical devices,�?? degree thesis, The Pennsylvania State University (1996).
  24. S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, �??Investigation on overpoled Lithium Niobate patterned crystal,�?? ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy 25-31 August 2002, Technical Digest, Part 2, 735-736.
  25. N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, �??Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,�?? Phys. Rev. Lett. 84, 4345-4348 (2000). [CrossRef] [PubMed]
  26. A.C. Busacca, V. Apostolopoulos, R.W. Eason, S. Mailis, �??Surface Engineered Ferroelectric Domains in Congruent Lithium Niobate Crystals,�?? Proc. in CLEO/QELS (Optical Society of America, Washington, D.C., 2002) pp. 642-643.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (135 KB)     
» Media 2: MOV (145 KB)     
» Media 3: MOV (1561 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited