OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 7 — Apr. 7, 2003
  • pp: 662–681

Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs

Richard W. Ziolkowski  »View Author Affiliations


Optics Express, Vol. 11, Issue 7, pp. 662-681 (2003)
http://dx.doi.org/10.1364/OE.11.000662


View Full Text Article

Enhanced HTML    Acrobat PDF (938 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The interactions of pulsed and continuous wave (CW) Gaussian beams with double negative (DNG) metatmaterials are considered. Sub-wavelength focusing of a diverging, normally incident pulsed Gaussian beam with a planar DNG slab is demonstrated. The negative angle of refraction behavior associated with the negative index of refraction exhibited by DNG metamaterials is demonstrated. The transmitted beam resulting from both 3-cycle and CW Gaussian beams that are obliquely incident on a DNG slab are shown to have this property. Gaussian beams that undergo total internal reflection from a DNG metamaterial slab are also shown to experience a negative Goos-Hänchen (lateral) shift. Several potential applications for these effects in the microwave and optical regimes are discussed.

© 2003 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(320.7120) Ultrafast optics : Ultrafast phenomena
(350.5500) Other areas of optics : Propagation
(350.5730) Other areas of optics : Resolution

ToC Category:
Focus Issue: Negative refraction and metamaterials

History
Original Manuscript: February 20, 2003
Revised Manuscript: March 25, 2003
Published: April 7, 2003

Citation
Richard Ziolkowski, "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Opt. Express 11, 662-681 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-662


Sort:  Journal  |  Reset  

References

  1. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, (Prentice Hall, Englewood Cliffs, NJ, 1991), pp. 36-38.
  2. V. G. Veselago, �??The electrodynamics of substances with simultaneously negative values of ε and μ,�?? Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, �??Composite Medium with zimultaneously negative permeability and permittivity,�?? Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  4. J. B. Pendry, �??Negative Refraction Makes a Perfect Lens,�?? Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  5. D. R. Smith and N. Kroll, �??Negative refractive index in left-handed materials,�?? Phys. Rev. Lett. 85, 2933-2936 (2000). [CrossRef] [PubMed]
  6. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, �??Microwave transmission through a two dimensional, isotropic, left-handed metamaterial,�?? Appl. Phys. Lett. 78, 489-491 (2001). [CrossRef]
  7. A. Shelby, D. R. Smith, and S. Schultz, �??Experimental verification of a negative refractive index of refraction,�?? Science 292, 77-79 (2001). [CrossRef] [PubMed]
  8. R. W. Ziolkowski and E. Heyman, �??Wave propagation in media having negative permittivity and permeability,�?? Phys. Rev. E 64, 056625 (2001). [CrossRef]
  9. C. Caloz, C.-C. Chang and T. Itoh, �??Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations,�?? J. Appl. Phys. 90, 5483-5486 (2001). [CrossRef]
  10. J. A. Kong, B.-I. Wu and Y. Zhang, �??A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability,�?? Microwave Opt. Tech. Lett. 33, 136-139 (2002). [CrossRef]
  11. P. M. Valanju, R. M. Walter, and A. P. Valanju, �??Wave refraction in negative-index media: Always positive and very inhomogeneous,�?? Phys. Rev. Lett. 88, 187401 (2002). [CrossRef] [PubMed]
  12. G. V. Eleftheriades, A. K. Iyer and P. C. Kremer, �??Planar negative refractive index media using periodically L-C loaded transmission lines,�?? IEEE Trans. Microwave Theory Tech. 50, 2702-2712 (2002). [CrossRef]
  13. K. G. Balmain, A. A. Luttgen, and P. C. Kremer, �??Resonance cone formation, reflection, refraction and focusing in a planar, anisotropic metamaterial,�?? Proceedings of the URSI National Radio Science Meeting, pp. 45, San Antonio, TX, July 2002.
  14. R. W. Ziolkowski, �??Design, fabrication, and testing of double negative metamaterials,�?? to appear in IEEE Trans. Antennas Propagat., June 2003. [CrossRef]
  15. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Inc., Norwood, MA, 1995).
  16. A. Taflove, Ed., Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Inc., Norwood, MA, 1998).
  17. D. C. Wittwer and R. W. Ziolkowski, �??Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy media,�?? IEEE Trans. Antennas and Propagat. 48, 192-199 (2000). [CrossRef]
  18. D. C. Wittwer and R. W. Ziolkowski, �??Maxwellian material based absorbing boundary conditions for lossy media in 3D,�?? IEEE Trans. Antennas and Propagat. 48, 200-213 (2000). [CrossRef]
  19. J. B. Judkins, C. W. Haggans, and R. W. Ziolkowski, �??2D-FDTD simulation for rewritable optical disk surface structure design,�?? Special Issue of Applied Optics on Optical Data Storage Technologies, Appl. Opt. 35, 2477-2487 (1996). [CrossRef] [PubMed]
  20. M. W. Feise, P. J. Bevelacqua, and J. B. Schneider, �??Effects of surface waves on behavior of perfect lenses,�?? Phys. Rev. B 66, 035113 (2002). [CrossRef]
  21. A. Ishimaru and J. Thomas, �??Transmission and focusing of a slab of negative refractive index,�?? Proceedings of the URSI National Radio Science Meeting, pp. 43, San Antonio, TX, July 2002.
  22. A. Grbic and G. V. Eleftheriades, �??Experimental verification of backward-wave radiation from a negative refractive index metamaterial,�?? J. Appl. Phys. 92, 5930-5935 (2002). [CrossRef]
  23. S.Ramo, J. R. Whinnery and T. Van Duzer, Fields and Waves in Communication Electronics, 3rd ed., Toronto: John Wiley & Sons, 1994, pp. 257-258.
  24. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, (Prentice Hall, Englewood Cliffs, NJ, 1991), pp. 165-169.
  25. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B 58, R10096-10099 (1998). [CrossRef]
  26. M. Notomi, �??Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,�?? Phys. Rev. B 62, 10696 (2000). [CrossRef]
  27. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, �??All-angle negative refraction without negative effective index,�??�?? Phys. Rev. B 65, 201104(R) (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: GIF (404 KB)     
» Media 2: GIF (333 KB)     
» Media 3: GIF (414 KB)     
» Media 4: GIF (416 KB)     
» Media 5: GIF (261 KB)     
» Media 6: GIF (458 KB)     
» Media 7: GIF (206 KB)     
» Media 8: GIF (626 KB)     
» Media 9: GIF (528 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited