OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 8 — Apr. 21, 2003
  • pp: 853–867

Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography

Alessandro Torricelli, Lorenzo Spinelli, Antonio Pifferi, Paola Taroni, Rinaldo Cubeddu, and Gian Maria Danesini  »View Author Affiliations

Optics Express, Vol. 11, Issue 8, pp. 853-867 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (1516 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel nonlinear perturbation model was successfully applied to the in vivo characterization of breast lesions (cysts and tumors) after detection by multi-wavelength time-resolved optical mammography. The model relies on the method of Padé approximants and consists in a nonlinear approximation of time-resolved transmittance curves in the presence of an inclusion. Tissue constituents (blood volume, blood oxygen saturation, lipids and water content) were estimated for both the bulk and the lesion areas. Cysts were reported to have high water content while tumors showed increased blood content as compared to bulk tissue.

© 2003 Optical Society of America

OCIS Codes
(170.3830) Medical optics and biotechnology : Mammography
(170.4730) Medical optics and biotechnology : Optical pathology
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Research Papers

Original Manuscript: March 5, 2003
Revised Manuscript: April 1, 2003
Published: April 21, 2003

Alessandro Torricelli, Lorenzo Spinelli, Antonio Pifferi, Paola Taroni, Rinaldo Cubeddu, and Gian Danesini, "Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography," Opt. Express 11, 853-867 (2003)

Sort:  Journal  |  Reset  


  1. E.A.Sickles, �??Breast cancer detection with transillumination and mammography,�?? Am. J. Roentg. 142, 841�??844 (1984).
  2. B. Monsees, J.M. Destouet and D. Gersell, �??Light scan evaluation of nonpalpable breast lesions,�?? Radiology 163, 467-470 (1987). [PubMed]
  3. S.B. Colak, M.B. van der Mark, G.W.'t Hooft, J.H. Hoogenraad, E.S. van der Linden, and F.A. Kuijpers, �??Clinical optical tomography and NIR spectroscopy for breast cancer detection,�?? IEEE J. Sel. Top. Quant. Electron. 5, 1143-1158 (1999). [CrossRef]
  4. M.A. Franceschini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W.W. Mantulin, M. Seeber, P.M. Schlag, and M. Kaschke, �??Frequency-domain techniques enhance optical mammography: initial clinical results,�?? Proc. Natl. Acad. Sci. 94, 6468-6473 (1997). [CrossRef] [PubMed]
  5. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. M. Schlag, �??Contrast Features of Breast Cancer in Frequency-Domain Laser Scanning Mammography,�?? J. Biomed. Opt. 3, 129-136 (1998). [CrossRef] [PubMed]
  6. L. Götz, S. H. Heywang-Köbrunner, O. Schütz, and H. Siebold, �??Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen),�?? Akt. Radiol. 8, 31-33 (1998).
  7. B.W. Pogue, S.P. Poplack, T.O. McBride, W.A. Wells, K.S. Osterman, U.L. Osterberg and K.D. Paulsen, �??Quantitative hemoglobin tomography with di.use near-infrared spectroscopy: Pilot results in the breast,�?? Radiology 218, 262-270 (2001).
  8. D. Grosenick, H. Wabnitz, H. Rinneberg, K.T. Moesta, and P.M. Schlag, �??Development of a time-domain optical mammograph and first in vivo applications,�?? Appl. Opt. 38, 2927-2943 (1999). [CrossRef]
  9. R. Cubeddu, G. M. Danesini, E.Giambattistelli, F. Messina, L. Pallaro, A. Pifferi, P. Taroni, and A. Torricelli, �??Time-resolved optical mammograph for clinical studies beyond 900 nm," in OSA Biomedical Topical Meetings, OSA Technical Digest, (Optical Society of America, Washington, D.C., 2002), pp. 674-676.
  10. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, �??Concurrent MRI and diffuse optical tomography of breast cancer after indocyanine green enhancement,�?? Proc. Nat. Acad. Sci. USA 97, 2767-2772 (2000). [CrossRef] [PubMed]
  11. V. Quaresima, S. J. Matcher, and M. Ferrari, �??Identification and quantification of intrinsic optical contrast for near-infrared mammography,�?? Photochem. Photobiol. 67, 4-14 (1998). [CrossRef] [PubMed]
  12. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, �??Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,�?? Photochem. Photobiol. 72, 383-391 (2000). [PubMed]
  13. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, �??Spectroscopy enhances the information content of optical mammography,�?? J. Biomed. Opt. 7, 60-71 (2002). [CrossRef] [PubMed]
  14. T. Durduran, R. Choe, J. P. Pulver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A.G.Yodh, �??Bulk optical properties of healthy female breast tissue,�?? Phys. Med. Biol. 47, 2847-2861 (2002). [CrossRef] [PubMed]
  15. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, �??Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy,�?? Neoplasia 2, 26-40 (2000). [CrossRef] [PubMed]
  16. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, �??Sources of absorption and scattering contrast for near-infrared optical mammography,�?? Acad. Radiol. 8, 211-218 (2001). [CrossRef] [PubMed]
  17. T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, U. L. �?sterberg, and K. D. Paulsen, �??Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,�?? J. Biomed. Opt. 7, 72-79 (2002). [CrossRef] [PubMed]
  18. S. Fantini, S. A. Walker, M.A. Franceschini, M. Kaschke, P.M. Schlag, and K.T. Moesta, �??Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,�?? Appl. Opt. 37, 1982-1989 (1998). [CrossRef]
  19. V. Chernomordik, D. W. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, P. M. Schlag, and A. Gandjbakhche, �??Quantification of optical properties of a breast tumor using random walk theory,�?? J. Biomed. Opt. 7, 80-87 (2002). [CrossRef] [PubMed]
  20. G. Mitic, J. Kölzer, J. Otto, E. Piles, G. Sölkner, and W. Zinth, "Time-gated transillumination of biological tissues and tissuelike phantoms," Appl. Opt. 33, 6699-6710 (1994). [CrossRef] [PubMed]
  21. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, �??Imaging of optical inhomogeneities in highly diffusive media: discrimination between scattering and absorption contributions,�?? Appl. Phys. Lett. 69, 4162-4164 (1996). [CrossRef]
  22. J. C. Hebden, and S. R. Arridge, �??Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,�?? Appl. Opt. 35, 6788-6796 (1996). [CrossRef] [PubMed]
  23. S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, �??Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration,�?? Appl. Opt. 40, 4622-4632 (2001). [CrossRef]
  24. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, �??Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,�?? Appl. Opt. 37, 1973-1981 (1998). [CrossRef]
  25. I. T. Gram, E. Funkhouser, and L. Tabar, �??The Tabar classification of mammographic parenchymal patterns,�?? Eur. J. Radiol. 24, 131-136 (1997). [CrossRef] [PubMed]
  26. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R Cubeddu, �??Experimental test of a perturbation model for time-resolved imaging in diffusive media,�?? Appl. Opt. (2003) in press. [CrossRef] [PubMed]
  27. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson and I. J. Bigio, �??Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,�?? Appl. Opt. 36, 949-957 (1997). [CrossRef] [PubMed]
  28. A. M. Nilsson, K. C. Sturesson, D. L. Liu and S. Andersson-Engels, �??Changes in spectral shape of tissue optical properties in conjuction with laser-induced thermotherapy,�?? Appl. Opt. 37, 1256-1267 (1998). [CrossRef]
  29. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess and W. W. Mantulin, �??Frequency domain optical mammography: edge effect corrections,�?? Med. Phys. 23, 149-156 (1996). [CrossRef] [PubMed]
  30. V. Chernomordik, D. Hattery, A. H. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, and R. Cubeddu, �??Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,�?? Opt. Lett. 25, 951-953, (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited