OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 8 — Apr. 21, 2003
  • pp: 933–938

Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser

Shi-Wei Chu, Tzu-Ming Liu, Chi-Kuang Sun, Cheng-Yung Lin, and Huai-Jen Tsai  »View Author Affiliations

Optics Express, Vol. 11, Issue 8, pp. 933-938 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (287 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The problem of weak harmonic generation signal intensity limited by photodamage probability in optical microscopy and spectroscopy could be resolved by increasing the repetition rate of the excitation light source. Here we demonstrate the first photomultiplier-based real-time second-harmonic-generation microscopy taking advantage of the strongly enhanced nonlinear signal from a high-repetition-rate Ti:sapphire laser. We also demonstrate that the photodamage possibility in common biological tissues can be efficiently reduced with this high repetition rate laser at a much higher average power level compared to the commonly used ~80- MHz repetition rate lasers.

© 2003 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5810) Medical optics and biotechnology : Scanning microscopy
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics

ToC Category:
Research Papers

Original Manuscript: March 24, 2003
Revised Manuscript: April 9, 2003
Published: April 21, 2003

Shi-Wei Chu, Tzu-Ming Liu, Chi-Kuang Sun, Cheng-Yung Lin, and Huai-Jen Tsai, "Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser," Opt. Express 11, 933-938 (2003)

Sort:  Journal  |  Reset  


  1. G. Dolino, �??Direct observation of ferroelectric domains in TGS with second-harmonic light,�?? Appl. Phys. Lett. 22, 123-124 (1973). [CrossRef]
  2. J. N. Gannaway and C. J. R. Sheppard, �??Second-harmonic imaging in the scanning optical microscope,�?? Opt. Quantum Electron. 10, 435 (1978). [CrossRef]
  3. Y. R. Shen, �??Surface properties probed by 2nd harmonic and sum frequency generation,�?? Nature 337, 519 (1989). [CrossRef]
  4. C.-K. Sun, S.-W. Chu, S.-P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, �??Scanning second-harmonicgeneration and third-harmonic-generation microscopy of GaN,�?? Appl. Phys. Lett. 77, 2331-2333 (2000). [CrossRef]
  5. C. -K. Sun, S. W. Chu, S. P. Tai, S. Keller, A. Abare, U. K. Mishira, and S. P. DenBaars, �??Mapping Piezoelectric-Field Distribution in Gallium Nitride with Scanning Second-Harmonic Generation Microscopy,�?? Scanning 23, 182 (2001). [CrossRef] [PubMed]
  6. P. J. Campagnola, M. -D. Wei, A. Lewis, and L. M. Loew, �??High resolution nonlinear optical imaging of live cells by second harmonic generation,�?? Biophys. J. 77, 3341-3349 (1999). [CrossRef] [PubMed]
  7. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, �??Membrane imaging by simultaneous secondharmonic generation and two-photon microscopy,�?? Opt. Lett. 25, 320-322 (2000). [CrossRef]
  8. G. Peleg, A. Lewis, M. Linial, and L. M. Loew, �??Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites,�?? Proc. Natl. Acad. Sci. 96, 6700-6704 (1999). [CrossRef] [PubMed]
  9. I. Freund, M. Deutsch, and A. Sprecher, �??Connective Tissue Polarity: Optical Second-harmonic Microscopy, Crossed-beam Summation, and Small-angle Scattering in Rat-tail Tendon,�?? Biophys. J. 50, 693-712 (1986). [CrossRef] [PubMed]
  10. Y. Guo, P. P. Ho, A. Tirksliunas, F. Liu, and R. R. Alfano, �??Optical harmonic generation from animal tissues by the use of picosecond and femtosecond laser pulses,�?? Opt. Lett. 22, 1323-1325 (1997). [CrossRef]
  11. S.-W. Chu, I-S. Chen, T.-M. Liu, C.-K. Sun, S.-P. Lee, B.-L. Lin, P.-C. Cheng, M.-X. Kuo, D.-J. Lin, and H.-L. Liu, �??Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy,�?? J. Microscopy 208, 190-200 (2002). [CrossRef]
  12. S.-W. Chu, I-S. Chen, T.-M. Liu, B.-L. Lin, P.-C. Cheng, and C.-K. Sun, �??Multi-modal Nonlinear Spectral Microscopy Based on a Femtosecond Cr:forsterite Laser,�?? Opt. Lett. 26, 1909-1911 (2001). [CrossRef]
  13. Y. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, �??Subsurface tumor progression investigated by noninvasive optical second harmonic tomography,�?? Proc. Natl. Acad. Sci. 96, 10854-10856 (1999). [CrossRef] [PubMed]
  14. W. Denk, J. H. Strickler, and W. W. Webb, �??Two photon laser scanning fluorescence microscopy,�?? Science 248, 73 (1990). [CrossRef] [PubMed]
  15. K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, �??Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,�?? Opt. Lett. 24, 113-115 (1999). [CrossRef]
  16. A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, �??Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold,�?? Proc. SPIE 4633A, 1-15 (2002).
  17. R. Shack, B. Bell, D. Hillman, R. Kingston, A. Landesman, R. Shoemaker, D. Vukobratovich, and P.H. Bartels, �??Ultrafast laser scanner microscope-first performance test (biological application),�?? IEEE International Workshop on Physics and Engineering in Medical Imaging. viii + 292, 49-57 (1982).
  18. M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, and S. Kawata, �??Second-harmonicgeneration microscope with a microlens array scanner,�?? Opt. Lett. 27, 1324-1326 (2002). [CrossRef]
  19. Private communication with OLYMPUS OPTICAL CO., LTD.
  20. Gavin D. Reid and Klaas Wynne, �??Ultrafast laser technology and spectroscopy,�?? in Encyclopedia of Analytical Chemistry, R.A. Meyers ed. (John Wiley & Sons Ltd, Chichester, UK. 2000)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: MOV (688 KB)     
» Media 2: MOV (1154 KB)     
» Media 3: MOV (782 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited