OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 9 — May. 5, 2003
  • pp: 1029–1038

Three-step design optimization for multi-channel fibre Bragg gratings

Kazimir Y. Kolossovski, Rowland A. Sammut, Alexander V. Buryak, and Dmitrii Yu. Stepanov  »View Author Affiliations

Optics Express, Vol. 11, Issue 9, pp. 1029-1038 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Methods to produce optimal designs for multi-channel fiber Bragg gratings (FBGs) with identical or close to identical channel-to-channel spectral characteristics are discussed. The proposed approach consists of three distinct steps. The first two steps (preliminary semi-analytic minimization and subsequent fine-tuning) do not depend on the grating design details, but on the number of channels only and can be readily applied to similar problems in other fields, e.g., in radio-physics and coding theory. The third step (spectral characteristic quality improvement) is FBG field specific. A comparison with other known optimization methods shows that the proposed approach yields generally superior results for small to moderate number of channels (N<60).

© 2003 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components

ToC Category:
Research Papers

Original Manuscript: March 24, 2003
Revised Manuscript: April 22, 2003
Published: May 5, 2003

Kazimir Kolossovski, Rowland Sammut, Alexander Buryak, and Dmitrii Stepanov, "Three-step design optimization for multi-channel fibre Bragg gratings," Opt. Express 11, 1029-1038 (2003)

Sort:  Journal  |  Reset  


  1. A. Othonos and K. Kalli, Fiber Bragg Gratings (Boston, Artech House, 1999).
  2. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, �??Quasicontinuous Wavelength Tuning in Super-Structure-Grating (SSG) DBR Lasers,�?? IEEE J. Quantum Electron. 32, 433-441 (1996). [CrossRef]
  3. A. V. Buryak and D. Yu. Stepanov, �??Novel multi-channel grating devices,�?? in proceedings of Bragg Gratings, Photosensitivity, and Poling in GlassWaveguides, vol. 60 of Top series, BThB3 (Washington DC, Optical Society of America, 2001).
  4. A. V. Buryak, K. Y. Kolossovski, and D. Yu. Stepanov, �??Optimization of Refractive Index Sampling for Multichannel Fiber Bragg Gratings,�?? IEEE J. Quantum Electron. 39, 91-98 (2003). [CrossRef]
  5. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, and J. Zweiback, �??Dammann Fiber Bragg Gratings and Phase-Only Sampling for High Channel Counts,�?? IEEE Photon. Tech. Lett. 14, 1309-1311 (2002). [CrossRef]
  6. M. Ibsen, A. Fu, H. Geiger, and R. I. Laming, �??All-fibre 4 x 10Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,�?? Electron. Lett. 35, 982-983 (1999). [CrossRef]
  7. Y. Painchaud, A. Mailloux, H. Chotard, E. Pelletier, and M. Guy, �??Multi-channel fiber Bragg gratings for dispersion and slope compensaion,�?? in OSA Technical Digest of Optical Fiber Communication Conference, ThAA5, 581-582 (Washington DC, Optical Society of America, 2002).
  8. S. W. Løvseth and D. Yu. Stepanov, �??Analysis of multiple wavelength DFB fiber lasers,�?? IEEE J. Quantum Electron. 37, 770-780 (2001). [CrossRef]
  9. S. Narahashi, K. Kumagai, and T. Nojima, �??Minimising peak to average power ratio of multitone signals using steepest descent method,�?? Electron. Lett. 31, 1552-1554 (1995). [CrossRef]
  10. M. Friese, �??Multitone signals with low crest factor,�?? IEEE Trans. Commun. 45, 1338-1344 (1997). [CrossRef]
  11. A. Othonos, X. Lee, and R. M. Measures, �??Superimposed multiple Bragg gratings,�?? Electron. Lett. 30, 1972-1974 (1994). [CrossRef]
  12. G. Sarlet, G. Morthier, R. Baets, D. J. Robbins, and D. C. J. Reid, �??Optimization of multiple exposure gratings for widely tunable laser,�?? IEEE Photon. Techn. Lett. 11, 21-23 (1999). [CrossRef]
  13. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, �??Theory, design, and performance of extended tuning range semiconductor lasers with sampled grating,�?? IEEE J. Quantum Electron. 29, 1824-1834 (1993). [CrossRef]
  14. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, �??Long periodic superstructure Bragg gratings in optical fibres,�?? Electron. Lett. 30, 1620- 1622 (1994). [CrossRef]
  15. W. H. Loh, F. Q. Zhou, and J. J. Pan, �??Sampled Fiber Grating Based-Dispersion Slope Compensator,�?? IEEE Photon. Techn. Lett. 11, 1280-1282 (1999). [CrossRef]
  16. H. Ishii, Y. Tohmori, Y. Yoshikuni, T. Tamamura, and Y. Kondo, �??Multiple-Phase-Shift Super Structure Grating DBR Lasers for Broad Wavelength Tuning,�?? IEEE Photon. Techn. Lett. 5, 613-615 (1993). [CrossRef]
  17. Y. Nasu and S. Yamashita, �??Multiple phase-shift superstructure fibre Bragg gratings for DWDM systems,�?? Electron. Lett. 37, 1471-1472 (2001). [CrossRef]
  18. R.W. Gerchberg andW. O. Saxton, �??A practical algorithm for the determination of phase from image and diffraction plane pictures,�?? Optik 35, 237-246 (1972).
  19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, 2nd ed. (Cambridge England, Cambridge Univ. Press, 1992).
  20. D. R. Gimlin and C. R. Patisaul, �?? On minimizing the Peak-to-Average Power Ration for the Sum of N Sinusoids,�?? IEEE Trans. Commun. 41, 631-635 (1993). [CrossRef]
  21. S. Narahashi and T. Nojima, �??New phasing scheme of N-multiple carriers for reducing peak-to-average power ratio,�?? Electron. Lett. 30, 1382-1383 (1994). [CrossRef]
  22. J. Schoukens, Y. Rolain, and P. Guillaume, �??Design of Narrowband, High-Resolution Multisines,�?? IEEE Trans. Instrument. Measur. 45, 750-753 (1996). [CrossRef]
  23. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (New York, Wiley & Sons, 1999).
  24. J. Skaar, L. Wang, and T. Erdogan, �??On the Synthesis of Fiber Bragg Gratings by Layer Peeling,�?? IEEE J. Quantum Electron. 37, 165-173 (2001). [CrossRef]
  25. L. B¨omer and M. Antweiler, �??Polyphase Barker sequences,�?? Electron. Lett. 25, 1577-1579 (1989); M. Friese and H. Zottmann, �??Polyphase Barker sequences up to length 31,�?? Electron. Lett. 30, 1930-1931 (1994); M. Friese, �??Polyphase Barker sequences up to length 36,�?? IEEE Trans. Inform. Theory 42, 1248-1250 (1996); A. R. Brenner, �??Polyphase Barker sequences up to length 45 with small alphabets,�?? Electron. Lett. 34, 1576-1577 (1998).
  26. E. Van der Ouderaa, J. Schoukens, and J. Renneboog, �??Peak Factor Minimization using a Time-Frequency Domain Swapping Algorithm,�?? IEEE Trans. Instr. Measur. 37, 145-147 (1988). [CrossRef]
  27. Y. Painchaud, H. Chotard, A. Mailloux, and Y. Vasseur, �??Superposition of chirped fibre Bragg gratings for thirdorder dispersion compensation over 32 WDM channels,�?? Electron. Lett. 38, 1572-1573 (2002). [CrossRef]
  28. A. V. Buryak, G. Edvell, A. Graf, K. Y. Kolossovski, and D. Yu. Stepanov, �??Recent progress and novel directions in multi-channel FBG dispersion compensation,�?? in OSA Technical Digest of Conference on Lasers and Electro- Optics (Washington DC, Optical Society of America, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited