OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 9 — May. 5, 2003
  • pp: 1050–1055

Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three noncoplanar beams

X. L. Yang, L. Z. Cai, and Q. Liu  »View Author Affiliations


Optics Express, Vol. 11, Issue 9, pp. 1050-1055 (2003)
http://dx.doi.org/10.1364/OE.11.001050


View Full Text Article

Enhanced HTML    Acrobat PDF (651 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the block-iterative frequency domain method and the non-orthogonal FDTD method, the photonic band gap (PBG) and spectral properties are investigated for a new class of two-dimensional (2-D) trigonal structures with an approximately circular or hexagonal “atom” shape formed by holographic lithography. Calculations of band structures as a function of the intensity threshold show that the PBG of 2-D titania arrays opens only for TM polarization, and directional PBG can open for TE and TM polarization simultaneously. In addition, up to four sizeable full PBGs can open for an inverted GaAs triangular structure.

© 2003 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.2110) Physical optics : Electromagnetic optics
(260.3160) Physical optics : Interference
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Research Papers

History
Original Manuscript: April 7, 2003
Revised Manuscript: April 24, 2003
Published: May 5, 2003

Citation
X. L. Yang, L. Cai, and Q. Liu, "Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams," Opt. Express 11, 1050-1055 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-9-1050


Sort:  Journal  |  Reset  

References

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong Localization of Photons in Certain Disordered Dielectric Superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. D. L. Bullock, C. Shih, R. S. Margulies, �??Photonic band structure investigation of two-dimensional Bragg reflector mirrors for semiconductor laser mode control,�?? J. Opt. Soc. Am. B 10, 399- (1993). [CrossRef]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, �??All-silica single-mode fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  5. B. D'Urso, O. Painter, J.D. O'Brien, T. Tombrello, A. Yariv, A. Scherer, �??Modal reflectivity in finite-depth twodimensional photonic-crystal Microcavities,�?? J. Opt. Soc. Am. B. 15, 1155-1159 (1998). [CrossRef]
  6. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography, �?? Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  7. T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, �??Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,�?? Appl. Phys. Lett. 79, 725-727 (2001). [CrossRef]
  8. L. Z. Cai, X. L. Yang, Y. R. Wang, �??Formation of a microfiber bundle by interference of three noncoplanar beams,�?? Opt. Lett. 26, 1858-1860 (2001). [CrossRef]
  9. L. Z. Cai, X. L. Yang, Y. R. Wang, �??All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,�?? Opt. Lett. 27, 900-902 (2002). [CrossRef]
  10. X. L. Yang, L. Z. Cai, Y. R. Wang, Q. Liu, �??Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices,�?? Opt. Lett. 28, 453-455 (2003). [CrossRef] [PubMed]
  11. A. Shishido, Ivan B. Diviliansky, I. C. Khoo, T. S. Mayer, �??Direct Fabrication of Two-Dimensional Titania Arrays Using Interference Photolithography,�?? Appl. Phys. Lett. 79, 3332-3334 (2001). [CrossRef]
  12. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,�?? Opt. Express 8, 173-190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a> [CrossRef] [PubMed]
  13. Richard Brent, Algorithms for minimization without derivatives (Prentice-Hall, 1973; republished by Dover in paperback, 2002).
  14. A. J. Ward and J. B. Pendry, �??Calculating photonic Green's functions using a nonorthogonal finite-difference time-domain method,�?? Phys. Rev. B 58, 7252-7259 (1998). [CrossRef]
  15. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  16. X. Zhang, Z.Q. Zhang, L. M. Li, C. Jin, D. Zhang, B. Man, B. Cheng, �??Enlarging a photonic band gap by using insertion,�?? Phys. Rev. B 61, 1892-1897 (2000). [CrossRef]
  17. C. M. Anderson and K. P. Giapis, �??Larger two-dimensional photonic band gaps,�?? Phys. Rev. Lett. 77, 2949-2952 (1996). [CrossRef] [PubMed]
  18. R. Padjen, J. M. Gerard, J. Y. Marzin, �??Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional systems,�?? J. Mod. Opt. 41, 295-310 (1994). [CrossRef]
  19. X. H. Wang, B. Y. Gu, Z. Y. Li, G. Z. Yang, �??Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices,�?? Phys. Rev. B 60, 11417�??11421 (1999). [CrossRef]
  20. C. M. Anderson and K. P. Giapis, �??Symmetry reduction in group 4 mm photonic crystals�??, Phys. Rev. B 56, 7313-7320 (1997). [CrossRef]
  21. Z. Y. Li, B. Y. Gu, G. Z. Yang, �??Large absolute band gap in 2D anisotropic photonic crystals,�?? Phys. Rev. Lett. 81, 2574-2577 (1998). [CrossRef]
  22. M. Plihal, A. Shambrook, A. A. Maradudin, P. Sheng, �??Two-dimensional photonic band structures,�?? Opt. Commun. 80, 199-204 (1991) [CrossRef]
  23. M. Plihal and A. A. Maradudin, �??Photonic band structure of two-dimensional systems: The triangular lattice,�?? Phys. Rev. B 44, 8565-8571 (1991). [CrossRef]
  24. V. Berger, O. Gauthier-Lafaye, E. Costard, �??Photonic band gaps and holography,�?? J. Appl. Phys. 82, 60-64 (1997). [CrossRef]
  25. D. Cassagne, C. Jouanin, D. Bertho, �??Hexagonal photonic-band-gap structures,�?? Phys. Rev. B 53, 7134-7142 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited