OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 9 — May. 5, 2003
  • pp: 980–991

Supercell lattice method for photonic crystal fibers

Wang Zhi, Ren Guobin, Lou Shuqin, and Jian Shuisheng  »View Author Affiliations


Optics Express, Vol. 11, Issue 9, pp. 980-991 (2003)
http://dx.doi.org/10.1364/OE.11.000980


View Full Text Article

Enhanced HTML    Acrobat PDF (1139 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A supercell lattice method, believed to be novel, deduced from the plane-wave expansion method and the localized basis function method, is presented for analyzing photonic crystal fibers (PCFs). The electric field is decomposed by use of Hermite—Gaussian functions, and the dielectric constant of PCFs missing a central air hole is considered as the sum of two virtual different periodic dielectric structures of perfect photonic crystals (PCs). The structures of both virtual PCs are expanded in cosine functions. From the wave equation and the orthonormality of the Hermite—Gaussian functions, the propagation characteristics of the PCFs, such as the mode field distribution, the effective area, and the dispersion property, are obtained. The accuracy of the novel method is demonstrated as we obtain the same results when the dielectric constant is split into two virtual ideal PCs in different ways.

© 2003 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Research Papers

History
Original Manuscript: March 31, 2003
Revised Manuscript: April 14, 2003
Published: May 5, 2003

Citation
Wang Zhi, Ren Guobin, Lou Shuqin, and Jian Shuisheng, "Supercell lattice method for photonic crystal fibers," Opt. Express 11, 980-991 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-9-980


Sort:  Journal  |  Reset  

References

  1. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, �??Photonic crystal fibers: a new class of optical waveguides,�?? Optical Fiber Technol. 5, 305-330 (1999). [CrossRef]
  2. S. E. Barkou, J. Broeng, and A. Bjarklev, �??Dispersion properties of photonic bandgap guiding fibers,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1998), FG5, pp. 117-119.
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, New York, 1995).
  4. S. Guo and S. Albin, �??Simple plane wave implementation for photonic crystal calculations,�?? Opt. Express 11, 167-175 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI = OPEX-11-2-167">http://www.opticsexpress.org/abstract.cfm?URI = OPEX-11-2-167</a> [CrossRef] [PubMed]
  5. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St. J. Russell, J. Broeng, P. J. Roberts, J. A. West, D. C. Allan, and J. C. Fajardo, �??The analogy between photonic crystal fibres and step index fibres,�?? in Optical Fiber Communication Conference, (Optical Society of America, Washington, D.C., 1998), FG4, pp. 114-116.
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  7. T. A. Birk, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, �??Single material fibers for dispersion compensation,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), FG2, pp. 108-110.
  8. A. Bjarklev, J. Broeng, K. Dridi, and S. E. Barkou, �??Dispersion properties of photonic crystal fibres,�?? in European Conference on Optical Communication, (Madrid, Spain, 1998), pp. 135-136.
  9. R. Guobin, L. Shuqin, W. Zhi, and J. Shuisheng are preparing a manuscript to be called �??Study on dispersion properties of photonic crystal fiber by effective-index model�?? (in Chinese).
  10. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, �??Modeling large air fraction holey optical fibers,�?? J. Lightwave Technol. 18, 50-56 (2000). [CrossRef]
  11. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, �??Holey optical fibers: an efficient modal model,�?? J. Lightwave Technol. 17, 1093-1102 (1999). [CrossRef]
  12. T.M. Monro, D.J. Richardson, N.G.R. Broderick, �??Efficient modeling of holey fibers,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 1999), FG3, 111-113.
  13. D. Mogilevtsev, T. A. Birks, P. St. Russell, �??Localized function method for modeling defect mode in 2-d photonic crystal,�?? J. Lightwave Technol. 17, 2078-2081 (1999). [CrossRef]
  14. M. Koshiba, �??Full vector analysis of photonic crystal fibers using the finite element method,�?? IEICE Electron, E85-C, 4, 881-888 (2002). (C) 2003 OSA 5 May 2003 / Vol. 11, No. 9 / OPTICS EXPRESS 980 #2290 - $15.00 US Received March 31, 2003; Revised April 15, 2003
  15. Z. Zhu and T. G. Brown, �??Full-vectorial finite-difference analysis of microstructured optical fibers Opt. Express 10, 853-864 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI = OPEX-10-17-853">http://www.opticsexpress.org/abstract.cfm?URI = OPEX-10-17-853</a> [CrossRef] [PubMed]
  16. L. P. Shen, C. L. Xu, and W. P. Huang are preparing a manuscript to be called �??Modal characteristics of index-guiding photonic crystal fibers: a comparison between scalar and vector analysis.�??
  17. A. W. Snyder, Optical Waveguide Theory (Chapman and Hall, New York, 1983).
  18. I.S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1994).
  19. I. Kimel and L. R. Elias, �??Relations between Hermite and Laguerre Gaussian modes,�?? IEEE J. Quant. Electron. 29, 2562-2567 (1993). [CrossRef]
  20. W. Zhi, R. Guobin, L. Shuqin, L. Weijun, and J. Shuisheng, �??the mode characteristics of the photonic crystal fibers,�?? to be published by ACTA OPTICA SINICA (in Chinese).
  21. J.M. Dudley, and S. Coen, �??Numerical simulations and coherence properties of supercontinuum Generation in Photonic Crystal and Tapered Optical Fibers,�?? IEEE J. Selected Topics in Quantum. Electron. 8, 651-659 (2002). [CrossRef]
  22. N.A. Mortensen, J.R. Folken, P.M.W. Skovgaard, and J. Broeng, �??Numerical aperture of single-mode photonic crystal fibers,�?? IEEE Photon. Tech. Lett., 14, 1094-1096 (2002). [CrossRef]
  23. N.A. Mortensen, �??Effective area of photonic crystal fibers,�?? Opt. Express 10, 341-348 (2002), <a href="http://www. opticsexpress.org/abstract.cfm?URI = OPEX-10-7-341.">http://www. opticsexpress.org/abstract.cfm?URI = OPEX-10-7-341</a> [CrossRef] [PubMed]
  24. A. Ferrando, E. Silvestre, P. Andres, J.J. Miret, and M.V. Andres, �??Designing the properties of dispersion- flattened photonic crystal fibers,�?? Opt. Express 9, 687-697 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI = OPEX-9-13-687">http://www.opticsexpress.org/abstract.cfm?URI = OPEX-9-13-687</a> [CrossRef] [PubMed]
  25. M. J. Steel, T. P. White, C. M. Sterke, R. C. McPhedran, and L. C. Botten, �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett. 26, 488-490 (2001). [CrossRef]
  26. R. G. Bin, W. Zhi, L. S. Qin, and S. S. Jian are preparing a manuscript to be called �??Study on dispersion properties of photonic crystal fiber by effective-index model.�??
  27. P. Shen, W. P. Huang, and S. S. Jian, �??Design of photonic crystal fibers for dispersion-related applications�?? IEEE Photon. Tech. Lett. (to be published).
  28. M. J. Steel and P. M. Osgood, Jr, �??Ellipitical-hole photonic crystal fibers,�?? Opt. Lett. 26, 229-231 (2001). [CrossRef]
  29. J. Broeng, D. Mogilevtsev, S. E. B. Libori, and A. Bjarklev, �??Polarization-preserving holey fibers,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2001), MA1.3, pp. 6-7.
  30. M. J. Steel and R. M. Osgood, �??Polarization and dispersive properties of elliptical-hole photonic crystal fibers,�?? J. Lightwave Technol. 19, 495-503 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited