OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 1 — Jan. 12, 2004
  • pp: 4–10

Instabilities of a Bose-Einstein condensate in a periodic potential: an experimental investigation

M. Cristiani, O. Morsch, N. Malossi, M. Jona-Lasinio, M. Anderlini, E. Courtade, and E. Arimondo  »View Author Affiliations


Optics Express, Vol. 12, Issue 1, pp. 4-10 (2004)
http://dx.doi.org/10.1364/OPEX.12.000004


View Full Text Article

Enhanced HTML    Acrobat PDF (86 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By accelerating a Bose-Einstein condensate in a controlled way across the edge of the Brillouin zone of a 1D optical lattice, we investigate the stability of the condensate in the vicinity of the zone edge. Through an analysis of the visibility of the interference pattern after a time-of-flight and the widths of the interference peaks, we characterize the onset of instability as the acceleration of the lattice is decreased. We briefly discuss the significance of our results with respect to recent theoretical work.

© 2004 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(020.0020) Atomic and molecular physics : Atomic and molecular physics

ToC Category:
Focus Issue: Cold atomic gases in optical lattices

History
Original Manuscript: November 7, 2003
Revised Manuscript: December 22, 2003
Published: January 12, 2004

Citation
M. Cristiani, Oliver Morsch, N. Malossi, M. Jona-Lasinio, M. Anderlini, E. Courtade, and E. Arimondo, "Instabilities of a Bose-Einstein condensate in a periodic potential: an experimental investigation," Opt. Express 12, 4-10 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-1-4


Sort:  Journal  |  Reset  

References

  1. C. Menotti, A. Smerzi, and A. Trombettoni, �??Superfluid dynamics of a Bose-Einstein condensate in a periodic potential,�?? New J. Phys. 5, 112 (2003). [CrossRef]
  2. BiaoWu and Qian Niu, �??Superfluidity of Bose-Einstein condensate in an optical lattice: Landau-Zener tunneling and dynamical instability,�?? New J. Phys. 5, 104 (2003). [CrossRef]
  3. Pearl J. Y. Louis, Elena A. Ostrovskaya, Craig M. Savage, and Yuri S. Kivshar, �??Bose-Einstein condensates in optical lattices: Band-gap structure and solitons,�?? Phys. Rev. A 67, 013602 (2003). [CrossRef]
  4. O. Morsch, J.H. Muller, M. Cristiani, D. Ciampini, and E. Arimondo, �??Bloch oscillations and mean-field effects of Bose-Einstein condensates in optical lattices,�?? Phys. Rev. Lett. 87, 140402 (2001). [CrossRef] [PubMed]
  5. M. Cristiani, O. Morsch, J.H. M¨uller, D. Ciampini, and E. Arimondo, �??Experimental properties of Bose-Einstein condensates in one-dimensional optical lattices: Bloch oscillations, Landau-Zener tunneling, and mean-field effects,�?? Phys. Rev. A 65, 063612 (2002). [CrossRef]
  6. M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, and I. Bloch, �??Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,�?? Nature (London) 415, 6867 (2002). [CrossRef]
  7. F. S. Cataliotti, L. Fallani, F. Ferlaino, C. Fort, P. Maddaloni and M. Inguscio, �??Superfluid current disruption in a chain of weakly coupled BoseEinstein condensates,�?? New J. Phys. 5, 71 (2003). [CrossRef]
  8. Yuri S. Kivshar and Mario Salerno, �??Modulational instabilities in the discrete deformable nonlinear Schrodinger equation,�?? Phys. Rev. E 49, 3543 (1994). [CrossRef]
  9. V.V. Konotop and M. Salerno, �??Modulational instability in Bose-Einstein condensates in optical lattices,�?? Phys. Rev. A 65, 021620(R) (2002). [CrossRef]
  10. Karen Marie Hilligsøe, Markus K. Oberthaler, and Karl-Peter Marzlin, �??Stability of gap solitons in a Bose-Einstein condensate,�?? Phys. Rev. A 66, 063605 (2002). [CrossRef]
  11. R.G. Scott, A.M. Martin, T.M. Fromhold, S. Bujkiewicz, F.W. Sheard, and M. Leadbeater, �??Creation of Solitons and Vortices by Bragg Reflection of Bose-Einstein Condensates in an Optical Lattice,�?? Phys. Rev. Lett. 90, 110404 (2003). [CrossRef] [PubMed]
  12. J.R. Anglin, �??Second-quantized Landau-Zener theory for dynamical instabilities,�?? Phys. Rev. A 67, 051601(R) (2003). [CrossRef]
  13. Yu. S. Kivshar and D. E. Pelinovsky, �??Self-focusing and transverse instabilities of solitary waves,�?? Phys. Rep. 331, 117 (2000). [CrossRef]
  14. Jason W. Fleischer, Mordechai Segev, Nikolaos K. Efrimidis, and Demetrios N. Christodoulides, �??Observation of two-dimensional discrete solitions in optically induced nonlinear photonic lattices,�?? Nature 422, 147 (2003). [CrossRef] [PubMed]
  15. Dragomir Neshev, Andrey A. Sukhorukov, Yuri S. Kivshar, andWieslaw Krolikowski, �??Observation of transverse instabilities in optically-induced lattices,�?? nlin.PS/0307053.
  16. Andrey A. Sukhorukov, Dragomir Neshev, Wieslaw Krolikowski, and Yuris S. Kivshar, �??Nonlinear Bloch-wave interaction and Bragg scattering in optically induced lattices,�?? nlin.PS/0309075.
  17. J.H. Muller, D. Ciampini, O. Morsch, G. Smirne, M. Fazzi, P. Verkerk, F. Fuso, and E. Arimondo, �??Bose-Einstein condensation of rubidium atoms in a triaxial TOP trap,�?? J. Phys. B: At. Mol. Opt. Phys. 33, 4095 (2000). [CrossRef]
  18. Y.B. Band and M. Trippenbach, �??Bose-Einstein condensates in time-dependent light potentials: Adiabatic and nonadiabatic behavior of nonlinear wave equations,�?? Phys. Rev. A 65, 053602 (2002). [CrossRef]
  19. D. Choi and Q. Niu, �??Bose-Einstein Condensates in an Optical Lattice,�?? Phys. Rev. Lett. 82, 2022 (1999). [CrossRef]
  20. Mark Fromhold, University of Nottingham (U.K.), private communication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited