OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 1 — Jan. 12, 2004
  • pp: 69–74

Scaling laws and vector effects in bandgap-guiding fibres

T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St.J. Russell  »View Author Affiliations


Optics Express, Vol. 12, Issue 1, pp. 69-74 (2004)
http://dx.doi.org/10.1364/OPEX.12.000069


View Full Text Article

Enhanced HTML    Acrobat PDF (2057 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scaling laws for photonic bandgaps in photonic crystal fibres are described. Although only strictly valid for small refractive index contrast, they successfully identify corresponding features in structures with large index contrast. Furthermore, deviations from the scaling laws distinguish features that are vector phenomena unique to electromagnetic waves from those that would be expected for generic scalar waves.

© 2004 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics

ToC Category:
Research Papers

History
Original Manuscript: November 18, 2003
Revised Manuscript: December 10, 2003
Published: January 12, 2004

Citation
T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, "Scaling laws and vector effects in bandgap-guiding fibres," Opt. Express 12, 69-74 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-1-69


Sort:  Journal  |  Reset  

References

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts and D. C. Allen, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  2. T. A. Birks, P. J. Roberts, P. St.J. Russell, D. M. Atkin, T. J. Shepherd, "Full 2D photonic band gaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995). [CrossRef]
  3. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," IEEE J. Lightwave Technol. 17, 2039-2041 (1999). [CrossRef]
  4. F. Brechet, P. Roy, J. Marcou and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000). [CrossRef]
  5. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  6. G. Bouwmans, F. Luan, J. C. Knight, P. St.J. Russell, L. Farr, B. J. Mangan and H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613</a>. [CrossRef] [PubMed]
  7. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton and D. J. Trevor, "Tunable photonic band gap fiber," Proc. Optical Fiber Communication Conference (2002) pp. 466-468.
  8. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  9. P. R. Villeneuve and M. Piché, "Photonic band gaps in two-dimensional square and hexagonal lattices," Phys. Rev. E 46, 4946-4972 (1992).
  10. J. Riishede, J. Broeng and A. Bjarklev, "All silica photonic bandgap fiber," Proc. Conference on Lasers and Electro-Optics (2003), paper CTuC5.
  11. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  12. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals (Princeton University Press, 1995), pp. 19-20.
  13. J. M. Pottage, D. M. Bird, T. D. Hedley, T. A. Birks, J. C. Knight, P. St.J. Russell and P. J. Roberts, "Robust photonic band gaps for hollow core guidance in PCF made from high index glass," Opt. Express 11, 2854-2861 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2854">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2854</a>. [CrossRef] [PubMed]
  14. T. A. Birks, J. C. Knight and P. St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  15. P. J. Roberts, T. A. Birks, P. St.J. Russell, T. J. Shepherd and D. M. Atkin, "Two-dimensional photonic band-gap structures as quasi-metals," Opt. Lett. 21, 507-509 (1996). [CrossRef] [PubMed]
  16. J. Riishede, N. A. Mortensen and J. Laegsgaard, "A 'poor man's approach' to modelling micro-structured optical fibres," J. Opt. A: Pure Appl. Opt. 5, 534-538 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited