OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 1 — Jan. 12, 2004
  • pp: 90–103

Matrix analysis of microring coupled-resonator optical waveguides

Joyce K. S. Poon, Jacob Scheuer, Shayan Mookherjea, George T. Paloczi, Yanyi Huang, and Amnon Yariv  »View Author Affiliations

Optics Express, Vol. 12, Issue 1, pp. 90-103 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use the coupling matrix formalism to investigate continuous-wave and pulse propagation through microring coupled-resonator optical waveguides (CROWs). The dispersion relation agrees with that derived using the tight-binding model in the limit of weak inter-resonator coupling. We obtain an analytical expression for pulse propagation through a semi-infinite CROW in the case of weak coupling which fully accounts for the nonlinear dispersive characteristics. We also show that intensity of a pulse in a CROW is enhanced by a factor inversely proportional to the inter-resonator coupling. In finite CROWs, anomalous dispersions allows for a pulse to propagate with a negative group velocity such that the output pulse appears to emerge before the input as in “superluminal” propagation. The matrix formalism is a powerful approach for microring CROWs since it can be applied to structures and geometries for which analyses with the commonly used tight-binding approach are not applicable.

© 2004 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

Original Manuscript: October 14, 2003
Revised Manuscript: December 19, 2003
Published: January 12, 2004

Joyce Poon, Jacob Scheuer, Shayan Mookherjea, George Paloczi, Yanyi Huang, and Amnon Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express 12, 90-103 (2004)

Sort:  Journal  |  Reset  


  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, �??Coupled-resonator optical waveguide: a proposal and analysis,�?? Opt. Lett. 24, 711�??713 (1999). [CrossRef]
  2. Y. Xu, R. K. Lee, and A. Yariv, �??Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,�?? J. Opt. Soc. Am. B 77, 387�??400 (2000). [CrossRef]
  3. N. Stefanou and A. Modinos, �??Impurity bands in photonic insulators,�?? Phys. Rev. B 57, 12 127�??12 133 (1998). [CrossRef]
  4. D. N. Christodoulides and N. K. Efremidis, �??Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals,�?? Opt. Lett. 27, 568�??570 (2002). [CrossRef]
  5. S. Mookherjea and A. Yariv, �??Kerr-stabilized super-resonant modes in coupled-resonator optical waveguides,�?? Phys. Rev. E 66, 046 610 (2002). [CrossRef]
  6. J. E. Heebner and R. W. Boyd, �??�??Slow�?? and �??fast�?? light in resonator-coupled waveguides,�?? J. Mod. Opt. 49, 2629�??2636 (2002). [CrossRef]
  7. C. K. Madsen, �??General IIR optical filter design for WDM applications using all-pass filters,�?? IEEE J. Lightwave Technol. 18, 860�??868 (2000). [CrossRef]
  8. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, �??Optical delay lines based on optical filters,�?? IEEE J. Quantum Electron. 37, 525�??532 (2001). [CrossRef]
  9. B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, �??Vertically coupled glass microring resonator channel dropping filters,�?? IEEE Photon. Technol. Lett. 11, 215�??217 (1999). [CrossRef]
  10. M. Bayindir, B. Temelkuran, and E. Ozbay, �??Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,�?? Phys. Rev. Lett. 84, 2140�??2143 (2000). [CrossRef] [PubMed]
  11. A. Yariv and P. Yeh, Optical waves in crystals: Propagation and control of laser radiation (Wiley, New York, 1984).
  12. K. Oda, N. Takato, and H. Toba, �??A wide-FSR waveguide double-ring resonator for optical FDM transmission systems,�?? IEEE J. of Lightwave Technol. 9, 728�??736 (1991). [CrossRef]
  13. R. Orta, P. Savi, R. Tascone, and D. Trinchero, �??Synthesis of multiple-ring resonator filters for optical systems,�?? IEEE Photon. Technol. Lett. 7, 1447�??1449 (1995). [CrossRef]
  14. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, �??Higher order filter response in coupled microring resonators,�?? IEEE Photon. Technol. Lett. 12, 320�??322 (2000). [CrossRef]
  15. A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli, �??Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,�?? Opt. Lett. 28, 1567�??1569 (2003). [CrossRef] [PubMed]
  16. A. Yariv, �??Universal relations for coupling of optical power between microresonators and dielectric waveguides,�?? Electron. Lett. 36, 321�??322 (2000). [CrossRef]
  17. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, �??Microring resonator channel dropping filter,�?? IEEE J. Lightwave Technol. 15, 998�??1005 (1997). [CrossRef]
  18. A. Melloni and F. Morichetti, �??Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,�?? Opt. Quantum Electron. 35, 365�??379 (2003). [CrossRef]
  19. J. E. Heeber, R. W. Boyd, and Q.-H. Park, �??SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,�?? J. Opt. Soc. Am. B 19, 722�??731 (2002). [CrossRef]
  20. S. Mookherjea and A. Yariv, �??Pulse propagation in a coupled-resonator optical waveguide to all orders of dispersion,�?? Phys. Rev. E 65, 056 601 (2002). [CrossRef]
  21. A. D. Poularikas, The handbook af formulas and tables for signal processing (IEEE Press, New York, 1998). [CrossRef]
  22. G. T. Paloczi, Y. Huang, A. Yariv, and S. Mookherjea, �??Polymeric Mach-Zehnder interferometer using serially coupled microresonators,�?? Opt. Express 11, 2666�??2671 (2003). [CrossRef] [PubMed]
  23. S. Longhi, M. Marano, M. Belmonte, and P. Laporta, �??Superluminal pulse propagation in linear and nonlinear photonic grating structures,�?? IEEE. J. Sel. Top. Quantum Electron. 9, 4�??16 (2003). [CrossRef]
  24. M. Bayindir, S. Tanriseven, and E. Ozbay, �??Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures,�?? Appl. Phys. A 72, 117�??119 (2001). [CrossRef]
  25. W. Chen and D. L. Mills, �??Gap solitons and the nonlinear optical-response of superlattices,�?? Phys. Rev. Lett. 58, 160�??163 (1987). [CrossRef] [PubMed]
  26. C. M. de Sterke and J. E. Sipe, �??Envelope-function approach for the electrodynamics of nonlinear periodic structures,�?? Phys. Rev. A 38, 5149�??5165 (1988). [CrossRef] [PubMed]
  27. C. M. de Sterke, D. G. Salinas, and J. E. Sipe, �??Coupled-mode theory for light propagation through deep nonlinear gratings,�?? Phys. Rev. E 54, 1969�??1989 (1996). [CrossRef]
  28. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, �??Bragg grating solitons,�?? Phys. Rev. Lett. 76, 1627�??1630 (1996). [CrossRef] [PubMed]
  29. D. N. Christodoulides and R. I. Joseph, �??Slow Bragg solitons in nonlinear periodic structures,�?? Phys. Rev. Lett. 62, 1746�??1749 (1989). [CrossRef] [PubMed]
  30. Little Optics press release, �??Higher order optical filters using microring resonators�?? (Little Optics, 2003), <a href="http://www.littleoptics.com/hofilter.pdf.">http://www.littleoptics.com/hofilter.pdf.</a>

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited