OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 10 — May. 17, 2004
  • pp: 2027–2032

Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window

Kunimasa Saitoh and Masanori Koshiba  »View Author Affiliations

Optics Express, Vol. 12, Issue 10, pp. 2027-2032 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new structure of highly nonlinear dispersion-flattened (HNDF) photonic crystal fiber (PCF) with nonlinear coefficient as large as 30 W-1km-1 at 1.55 μm designed by varying the diameters of the air-hole rings along the fiber radius. This innovative HNDF-PCF has a unique effective-index profile that can offer not only a large nonlinear coefficient but also flat dispersion slope and low leakage losses. It is shown through numerical results that the novel microstructured optical fiber with small normal group-velocity dispersion and nearly zero dispersion slope offers the possibility of efficient supercontinuum generation in the telecommunication window using a few ps pulses.

© 2004 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Research Papers

Original Manuscript: April 20, 2004
Revised Manuscript: April 27, 2004
Published: May 17, 2004

Kunimasa Saitoh and Masanori Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express 12, 2027-2032 (2004)

Sort:  Journal  |  Reset  


  1. P. St. J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. M.J. Gander, R. McBride, J.D.C. Jones, D. Mogilevtsev, T.A. Birks, J.C. Knight, and P. St. J. Russell, �??Experimantal measurement of group velocity dispersion in photonic crystal fibre,�?? Electron. Lett. 35, 63-64 (1999). [CrossRef]
  3. A. Ferrando, E. Silvestre, P. Andrés, J.J. Miret, and M.V. Andrés, �??Desinging the properties of dispersion-flattened photonic crystal fibers,�?? Opt. Express 9, 687-697 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687</a> [CrossRef] [PubMed]
  4. W.H. Reeves, J.C. Knight, P. St. J. Russell, and P. J. Roberts, �??Demonstration of ultra-flattened dispersion in photonic crystal fibers,�?? Opt. Express 10, 609-613 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-609</a> [CrossRef] [PubMed]
  5. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, �??Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,�?? Opt. Express 11, 843-852 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843</a>. [CrossRef] [PubMed]
  6. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres, (Kluwer Academic Publishers, 2003). [CrossRef]
  7. V. Finazzi, T.M. Monro, and D.J. Richardson, �??Small-core holey fibers: nonlinearity and confinement loss trade-offs,�?? J. Opt. Soc. Am. B 20, 1427-1436 (2003). [CrossRef]
  8. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, �??Supercontinuum generation at 1.55 µm in a dispersion-flattened polarization-maintaining photonic crystal fiber,�?? Opt. Express 11, 1537- 1540 (2003), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1537">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1537</a>. [CrossRef] [PubMed]
  9. W. Lieber, M. Loch, H. Etzkorn, W.E. Heinlein, K.-F. Klein, H.U. Bonewitz, and A. Mühlich, �??Three-step index strictly single-mode, only F-doped silica fibers for broad-band low dispersion,�?? J. Lightwave Technol. LT-4, 715-719 (1986). [CrossRef]
  10. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002) . [CrossRef]
  11. T. Okuno, M. Hirano, T. Kato, M. Shigematsu, and M. Onishi, �??Highly nonlinear and perfectly dispersion-flattened fibers for efficient optical signal processing applications,�?? Electron. Lett. 39, 972-974 (2003). [CrossRef]
  12. T. Morioka, K. Okamoto, M. Ishii, and M. Saruwatari, �??Low-noise, pulsewidth tunable picosecond to femtosecond pulse generation by spectral filtering of wideband supercontinuum with variable bandwidth arrayed-waveguide grating filters,�?? Electron. Lett. 32, 836-837 (1996). [CrossRef]
  13. Y. Takushima, F. Futami, and K. Kikuchi, �??Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source,�?? IEEE Photon. Technol. Lett. 10, 1560-1562 (1998). [CrossRef]
  14. G. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2dn Edition (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited