OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 10 — May. 17, 2004
  • pp: 2150–2155

Efficient second harmonic generation of femtosecond laser at 1 μm

Heyuan Zhu, Tao Wang, Wanguo Zheng, Peng Yuan, Liejia Qian, and Dianyuan Fan  »View Author Affiliations


Optics Express, Vol. 12, Issue 10, pp. 2150-2155 (2004)
http://dx.doi.org/10.1364/OPEX.12.002150


View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using spectrally noncritical phase-matching in a partially deuterated KDP around its retracing point of phase-matching, we have experimentally and numerically investigated the characteristics of second-harmonic generation (SHG) with femtosecond laser at 1 μm for the first time. This phase-matching configuration can support efficient SHG over 20nm bandwidth of the fundamental laser at 1 μm in a 10-mm-long crystal. Efficiency of harmonic conversion as high as 55% has been demonstrated.

© 2004 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Research Papers

History
Original Manuscript: April 2, 2004
Revised Manuscript: April 22, 2004
Published: May 17, 2004

Citation
Heyuan Zhu, Tao Wang, Wanguo Zheng, Peng Yuan, Liejia Qian, and Dianyuan Fan, "Efficient second harmonic generation of femtosecond laser at one micron," Opt. Express 12, 2150-2155 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2150


Sort:  Journal  |  Reset  

References

  1. W. H. Glenn, �??Second-Harmonic Generation by Picosecond Optical Pulses,�?? IEEE J. Quantum Electron. 5, 284 (1969). [CrossRef]
  2. R. J. Ellingson and C. L. Tang, �??High-repetition-rate femtosecond pulse generation in the blue,�?? Opt. Lett. 17, 343 (1992). [CrossRef] [PubMed]
  3. O. E. Martinez, �??Achromatic phase matching for second harmonic generation of femtosecond pulses,�?? IEEE J. Quantum Electron. 25, 2464 (1989). [CrossRef]
  4. G. Szabo, Z. Bor, �??Broadband Frequency Doubler for Femtosecond Pulses,�?? Appl. Phys. B 50, 51 (1990).
  5. B. A. Richman, S. E. Bisson, R. Trebino, E. Sidick, and A. Jacobson, �??Efficient broadband second-harmonic generation by dispersive achromatic nonlinear conversion using only prisms,�?? Opt. Lett. 23, 497 [CrossRef]
  6. M. Brown, �??Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs,�?? Opt. Lett. 23, 1591 (1998). [CrossRef]
  7. S. Ashihara, T. Shimura, and K. Kuroda, �??Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings,�?? J. Opt. Soc. Am. B 20, 853 (2003). [CrossRef]
  8. G. Y. Wang and E. M. Garmire, �??High-efficiency generation of ultrashort second-harmonic pulses based on the Cerenkov geometry,�?? Opt. Lett. 19, 254 (1994). [CrossRef] [PubMed]
  9. L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, �??Efficient frequency doubling of a femtosecond fiber laser,�?? Opt. Lett. 21, 1759 (1996). [CrossRef] [PubMed]
  10. X. Liu, L. J. Qian, and F. W. Wise, �??Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,�?? Opt. Commun. 144, 265 (1997). [CrossRef]
  11. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, �??Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,�?? Opt. Lett. 27, 1046 (2002). [CrossRef]
  12. M. S. Webb, D. Eimerl, and S. P. Velsko, �??Wavelength insensitive phase-matched second-harmonic generation in partially deuterated KDP,�?? J. Opt. Soc. Am. B 9, 1118 (1992). [CrossRef]
  13. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer, New York, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited