OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 10 — May. 17, 2004
  • pp: 2156–2165

Ultrahigh resolution Fourier domain optical coherence tomography

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher  »View Author Affiliations


Optics Express, Vol. 12, Issue 10, pp. 2156-2165 (2004)
http://dx.doi.org/10.1364/OPEX.12.002156


View Full Text Article

Enhanced HTML    Acrobat PDF (602 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present, for the first time, in vivo ultrahigh resolution (~2.5 μm in tissue), high speed (10000 A-scans/second equivalent acquisition rate sustained over 160 A-scans) retinal imaging obtained with Fourier domain (FD) OCT employing a commercially available, compact (500×260mm), broad bandwidth (120 nm at full-width-at-half-maximum centered at 800 nm) Titanium:sapphire laser (Femtosource Integral OCT, Femtolasers Produktions GmbH). Resolution and sampling requirements, dispersion compensation as well as dynamic range for ultrahigh resolution FD OCT are carefully analyzed. In vivo OCT sensitivity performance achieved by ultrahigh resolution FD OCT was similar to that of ultrahigh resolution time domain OCT, although employing only 2–3 times less optical power (~300 μW). Visualization of intra-retinal layers, especially the inner and outer segment of the photoreceptor layer, obtained by FDOCT was comparable to that, accomplished by ultrahigh resolution time domain OCT, despite an at least 40 times higher data acquisition speed of FD OCT.

© 2004 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(140.3590) Lasers and laser optics : Lasers, titanium
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Research Papers

History
Original Manuscript: March 11, 2004
Revised Manuscript: April 28, 2004
Published: May 17, 2004

Citation
R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156


Sort:  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler, �??Ultrahigh resolution optical coherence tomography,�?? J. Biomed. Opt. 9, 47-74 (2004). [CrossRef] [PubMed]
  3. W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, and A. F. Fercher, �??Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography,�?? Arch. Ophthalmol. 121, 695-706, (2003). [CrossRef] [PubMed]
  4. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, �??In vivo video rate optical coherence tomography,�?? Opt. Express 3 , 219 (1998) <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219</a> [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, �??Measurement of intraocular distances by backscattering spectral interferometry,�?? Optics Communications 117, 43-48 (1995). [CrossRef]
  6. M. Wojtkowski, R.Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F.Fercher, �??In-vivo human retinal imaging by Fourier domain optical coherence tomography,�?? J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  7. T. Mitsui, �??Dynamic Range of Optical Reflectometry with Spectral Interferometry,�?? Jpn. J. Appl. Phys. 38, 6133-6137 (1999). [CrossRef]
  8. P. Andretzky, M. Knauer, F. Kiesewetter, and G. Haeusler, �??Optical Coherence Tomography by Spectral Radar: Improvement of Signal-to-Noise Ratio,�?? Proc. SPIE 3915, 55-59 (2000). [CrossRef]
  9. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, �??Performance of Fourier domain vs. time domain optical coherence tomography,�?? Optics Express 11, 889-894 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a> [CrossRef] [PubMed]
  10. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, �??Sensitivity advantage of swept source and Fourier domain optical coherence tomography,�?? Opt. Expr. 11, 2183 (2003) <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a> [CrossRef]
  11. J. F. De Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, �??Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,�?? Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  12. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, �??In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,�?? Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  13. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer,�?? High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,�?? Opt. Express 11, 3598-3604 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598</a> [CrossRef] [PubMed]
  14. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, �??In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,�?? 12, 367-376 (2004) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a> [CrossRef] [PubMed]
  15. R. Leitgeb, L. Schmetterer, F. Berisha, C. K. Hitzenberger, M. Wojtkowski, T. Bajraszewski, and A. F. Fercher, �??Real- time measurements of in-vitro flow by Fourier domain optical coherence tomography,�?? Opt. Lett. 29, 171-174 (2004) . [CrossRef] [PubMed]
  16. R. A. Leitgeb, L. Schmetterer, W. Drexler, T. Bajraszewski, R. J. Zawadzki, and A. F. Fercher, �??Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography, �??Optics Express 11, 3116, (2003); <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a> [CrossRef] [PubMed]
  17. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, �??In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,�?? Opt. Expr. 11, 3490 (2003) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a> [CrossRef]
  18. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, �??Full range complex spectral optical coherence tomography,�?? Opt. Lett. 27, 1415-1418 (2002). [CrossRef]
  19. R. A. Leitgeb, C.K. Hitzenberger, T. Bajraszewski, and A. F. Fercher, �??Phase shifting method to achieve high speed long depth range imaging using FDOCT,�?? Opt. Lett. 28, 2201-2204 (2003). [CrossRef] [PubMed]
  20. C.K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, �??Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,�?? J. Biomed. Opt. 4, 144-151 (1999). [CrossRef] [PubMed]
  21. W. Drexler, B. Hermann, A. Unterhuber, H. Sattmann, T. H. Ko, M. Wirtitsch, M. Stur, C. Scholda, E. Ergun, A. Anger, P. Ahnelt, J. G. Fujimoto, and A. F. Fercher, �??Quantification of photoreceptor layer thickness in different macular pathologies using ultra high resolution optical coherence tomography,�?? SPIE Proc. 5214, 5214-27 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited