OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 10 — May. 17, 2004
  • pp: 2270–2279

Digital in-line holography: influence of the shadow density on particle field extraction

M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun  »View Author Affiliations

Optics Express, Vol. 12, Issue 10, pp. 2270-2279 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have used a digital in-line holography system with numerical reconstruction for 3D particle field extraction. In this system the diffraction patterns (holograms) are directly recorded on a charge-coupled device (CCD) camera. The numerical reconstruction is based on the wavelet transformation method. A sample volume is reconstructed by computing the wavelet components for different scale parameters. These parameters are related to the axial distance between a particle and the CCD camera. The particle images are identified and localized by analyzing the maximum of the wavelet transform modulus and the equivalent diameter of the particle image. The general process for the 3D particle location and data processing method are presented. As in classical holography we found that the signal to noise ratio depends only on the shadow density. Nevertheless, we show that both the volume depth and the shadow density affect the percentage of extracted particles.

© 2004 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(100.6890) Image processing : Three-dimensional image processing

ToC Category:
Research Papers

Original Manuscript: April 21, 2004
Revised Manuscript: May 7, 2004
Published: May 17, 2004

Mokrane Malek, D. Allano, S. Coëtmellec, and D. Lebrun, "Digital in-line holography: influence of the shadow density on particle field extraction," Opt. Express 12, 2270-2279 (2004)

Sort:  Journal  |  Reset  


  1. T.M. Kreis, W.P.O. J¨uptner, �??Suppression of the dc term in digital holography,�?? Opt. Eng. 36, 2357-2360 (1997). [CrossRef]
  2. G. Pan, H. Meng, �??Digital holography of particle fields: reconstruction by use of complex amplitude,�?? Opt. lett. 42, 827-833 (2003).
  3. L. Onural, �??Diffraction from a wavelet point of view,�?? Opt. Lett. 18, 846-848 (1993). [CrossRef] [PubMed]
  4. W.L. Anderson, �??Two dimensional wavelet transform and application to holographic particle velocimetry,�?? Appl. Opt. 34 249-255 (1995). [CrossRef] [PubMed]
  5. C. Buraga-Lefebvre,S. Coetmellec,D. Lebrun, C. Ozkul, �??Application of wavelet transform to hologram analysis: three-dimensional location of particles,�?? Opt. Lasers Eng. 33 409-421 (2000). [CrossRef]
  6. D. Lebrun, A.M. Benkouider, S. Coetmellec and M. Malek, �??Particle field digital holography reconstruction in arbitrary tilted planes,�?? Opt. Express. 11 224-229 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-224.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-224</a> [CrossRef] [PubMed]
  7. L. Onural, M.T. Ozgen, �??Extraction of the three dimensional object location information directly from the in-line holograms using Wigner analysis,�?? J. Opt. Soc. Am. A. 9 252-260 (1992). [CrossRef]
  8. S. Coetmellec, D. Lebrun, C. Ozkul, �??Characterization of diffraction patterns directly from in-line holograms with the fractional Fourier transform,�?? Appl. Opt. 41 312-319 (2002). [CrossRef]
  9. M. Malek, D. Allano, S. Cöetmellec, C. Ozkul, D. Lebrun, �??Digital in-line holography for three-dimensional two-components particle tracking velocimetry,�?? Meas. Sci. Technol., 15 699-705 (2004). [CrossRef]
  10. K. D. Hinsch, �??Holographic particle image velocimetry,�?? Meas. Sci. Technol. 13, R61-R72 (2002). [CrossRef]
  11. K. D. Hinsch,�??Three-dimensional particle velocimetry,�?? Meas. Sci. Technol. 6, 742-753 (1995). [CrossRef]
  12. D. H. Barnhart, N. A. Halliwell, J. M. Coupland, �??Holography particle image velocimetry: analysing using a conjugate reconstruction geometry,�?? Opt. Laser Technol. 32, 527-533 (2000). [CrossRef]
  13. Y. Pu, H. Meng, �??An advanced off-axis holographic particle image velocimetry (HPIV) system,�?? Exp. in Fluid, 29 184-197 (2000). [CrossRef]
  14. S. Co¨etmellec, C. Buraga-Lefevre, D. Lebrun, C. ¨ Ozkul, �??Application of in-line digital holography to multiple plane velocimetry,�?? Meas. Sci. Technol. 12 1392-1397 (2001). [CrossRef]
  15. Wenbo Xu, M. H. Jericho, I. A. Meinertzhagen and H. J. Kreuzer, �??Digital in-line holography for biological applications,�?? PNAS 98 11301-11305 (2001). [CrossRef] [PubMed]
  16. H. Meng, W. L. Anderson, Fazle Hussain, David D. Liu, �??Intrinsic speckle noise in in-line particle holography,�?? J. Opt. Soc. Am. A 10, 2046-2058 (1993). [CrossRef]
  17. H. Royer, �??An application of high-speed microholography: the metrology of fogs,�?? Nouv. Rev. Opt. 5, 87-93 (1974). [CrossRef]
  18. M. Malek, S. Cöetmellec, D. Lebrun, D. Allano, �??Formulation of in-line holography process by a linear shift invariant system: Application to the measurement of fiber diameter,�?? Optics communications 223, 263-271 (2003). [CrossRef]
  19. Ronalds N. Bracewell, �??The Fourier Transform and its applications,�?? second edition, p. 245 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited