OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 11 — May. 31, 2004
  • pp: 2435–2447

Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography

Barry Cense, Nader A. Nassif, Teresa C. Chen, Mark C. Pierce, Seok-Hyun Yun, B. Hyle Park, Brett E. Bouma, Guillermo J. Tearney, and Johannes F. de Boer  »View Author Affiliations

Optics Express, Vol. 12, Issue 11, pp. 2435-2447 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the first ultrahigh-resolution optical coherence tomography (OCT) structural intensity images and movies of the human retina in vivo at 29.3 frames per second with 500 A-lines per frame. Data was acquired at a continuous rate of 29,300 spectra per second with a 98% duty cycle. Two consecutive spectra were coherently summed to improve sensitivity, resulting in an effective rate of 14,600 A-lines per second at an effective integration time of 68 µs. The turn-key source was a combination of two super luminescent diodes with a combined spectral width of more than 150 nm providing 4.5 mW of power. The spectrometer of the spectral-domain OCT (SD-OCT) setup was centered around 885 nm with a bandwidth of 145 nm. The effective bandwidth in the eye was limited to approximately 100 nm due to increased absorption of wavelengths above 920 nm in the vitreous. Comparing the performance of our ultrahighresolution SD-OCT system with a conventional high-resolution time domain OCT system, the A-line rate of the spectral-domain OCT system was 59 times higher at a 5.4 dB lower sensitivity. With use of a software based dispersion compensation scheme, coherence length broadening due to dispersion mismatch between sample and reference arms was minimized. The coherence length measured from a mirror in air was equal to 4.0 µm (n=1). The coherence length determined from the specular reflection of the foveal umbo in vivo in a healthy human eye was equal to 3.5 µm (n=1.38). With this new system, two layers at the location of the retinal pigmented epithelium seem to be present, as well as small features in the inner and outer plexiform layers, which are believed to be small blood vessels.

© 2004 Optical Society of America

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Research Papers

Original Manuscript: March 16, 2004
Revised Manuscript: May 17, 2004
Published: May 30, 2004

Barry Cense, Nader Nassif, Teresa Chen, Mark Pierce, Seok-Hyun Yun, B. Park, Brett Bouma, Guillermo Tearney, and Johannes de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004)

Sort:  Journal  |  Reset  


  1. D. Huang, E.A. Swanson, C.P. Lin, et al., "Optical coherence tomography," Science 254, 1178-81 (1991). [CrossRef] [PubMed]
  2. F.W. Campbell and D.G. Green, "Optical and Retinal Factors Affecting Visual Resolution," J. Physiol.-London 181, 576-593 (1965). [PubMed]
  3. E.A. Swanson, D. Huang, M.R. Hee, et al., "High-Speed Optical Coherence Domain Reflectometry," Opt. Lett. 17, 151-153 (1992). [CrossRef] [PubMed]
  4. W. Drexler, U. Morgner, F.X. Kartner, et al., "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  5. W. Drexler, H. Sattmann, B. Hermann, et al., "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003). [CrossRef] [PubMed]
  6. W. Drexler, U. Morgner, R.K. Ghanta, et al., "Ultrahigh-resolution ophthalmic optical coherence tomography,"Nat. Med. 7, 502-507 (2001). [CrossRef] [PubMed]
  7. American National Standards Institute, American National Standard for Safe Use of Lasers Z136.1. 2000: Orlando.
  8. C.K. Hitzenberger, P. Trost, P.W. Lo and Q.Y. Zhou, "Three-dimensional imaging of the human retina by highspeed optical coherence tomography," Opt. Express 11, 2753-2761 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753</a> [CrossRef] [PubMed]
  9. B. Cense, T.C. Chen, B.H. Park, M.C. Pierce and J.F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002). [CrossRef]
  10. B. Cense, T.C. Chen, B.H. Park, M.C. Pierce and J.F. de Boer, "In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 121-125 (2004). [CrossRef] [PubMed]
  11. A.F. Fercher, C.K. Hitzenberger, G. Kamp and S.Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  12. G. Hausler and M.W. Lindner, "Coherence Radar and Spectral Radar - new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  13. A.F. Fercher, W. Drexler, C.K. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  14. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. Part 1 -Regul. Pap. Short Notes Rev. Pap. 38, 6133-6137 (1999).
  15. R. Leitgeb, C.K. Hitzenberger and A.F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a> [CrossRef] [PubMed]
  16. J.F. de Boer, B. Cense, B.H. Park, et al., "Improved signal-to-noise ratio in spectral-domain compared with timedomain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  17. M.A. Choma, M.V. Sarunic, C.H. Yang and J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a> [CrossRef] [PubMed]
  18. N. Nassif, B. Cense, B.H. Park, et al., "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  19. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  20. N.A. Nassif, B. Cense, B.H. Park, et al., "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a> [CrossRef] [PubMed]
  21. G.J. Tearney, B.E. Bouma and J.G. Fujimoto, "High-speed phase- and group-delay scanning with a grating-based phase control delay line," Opt. Lett. 22, 1811-1813 (1997). [CrossRef]
  22. J.F. de Boer, C.E. Saxer and J.S. Nelson, "Stable carrier generation and phase-resolved digital data processing in optical coherence tomography," Appl. Opt. 40, (2001). [CrossRef]
  23. A.F. Fercher, C.K. Hitzenberger, M. Sticker, et al., "Dispersion compensation for optical coherence tomography depth- scan signals by a numerical technique," Opt. Commun. 204, 67-74 (2002). [CrossRef]
  24. D.L. Marks, A.L. Oldenburg, J.J. Reynolds and S.A. Boppart, "Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media," Appl. Opt. 42, 204-217 (2003). [CrossRef] [PubMed]
  25. D.L. Marks, A.L. Oldenburg, J.J. Reynolds and S.A. Boppart, "Autofocus algorithm for dispersion correction in optical coherence tomography," Appl. Opt, 42, 3038-3046 (2003). [CrossRef] [PubMed]
  26. S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park and J.F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength," Opt. Express 11, 3598-3604 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598</a> [CrossRef] [PubMed]
  27. B.R. White, M.C. Pierce, N. Nassif, et al., "In vivo dynamic human retinal blood flow imaging using ultra-highspeed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a> [CrossRef]
  28. D.M. Snodderly, R.S. Weinhaus and J.C. Choi, "Neural Vascular Relationships in Central Retina of Macaque Monkeys (Macaca-Fascicularis)," J. Neurosci. 12, 1169-1193 (1992). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2378 KB)     
» Media 2: AVI (5285 KB)     
» Media 3: AVI (2312 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited