OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 11 — May. 31, 2004
  • pp: 2448–2453

Sub-picosecond pulse generation employing an SOA-based nonlinear polarization switch in a ring cavity

X. Yang, Z. Li, E. Tangdiongga, D. Lenstra, G. D. Khoe, and H. J. S. Dorren  »View Author Affiliations


Optics Express, Vol. 12, Issue 11, pp. 2448-2453 (2004)
http://dx.doi.org/10.1364/OPEX.12.002448


View Full Text Article

Enhanced HTML    Acrobat PDF (61 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the generation of sub-picosecond optical pulses using a semiconductor optical amplifier (SOA) and a linear polarizer placed in a ring-laser configuration. Nonlinear polarization rotation in the SOA serves as the passive mode-locking mechanism. The ring cavity generates pulses with duration below 800 fs (FWHM) at a repetition rate of 14 MHz. The time -bandwidth product is 0.48. Simulation results in good agreement with the experimental results are presented.

© 2004 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Research Papers

History
Original Manuscript: April 23, 2004
Revised Manuscript: May 14, 2004
Published: May 30, 2004

Citation
X. Yang, Z. Li, E. Tangdiongga, D. Lenstra, G. Khoe, and H. Dorren, "Sub-picosecond pulse generation employing an SOA-based nonlinear polarization switch in a ring cavity," Opt. Express 12, 2448-2453 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2448


Sort:  Journal  |  Reset  

References

  1. M. Nakazawa, T. Yamamoto and K. Tamura, �??12.8 Tbit/s-70 km OTDM transmission using third- and fourth order simultaneous dispersion compensation with a phase modulator," Electron. Lett. 36, 2027-2029 (2000) [CrossRef]
  2. J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y.R. Zhou, A. Lord and D. Payne, "Field trial of 160Gbit/s OTDM add/drop node in a link of 275km deployed fiber," in Optical Fiber Communication Conference (The Optical Society of America, Washington, DC, 2004), PDP1.
  3. M.E. Fermann, A. Galvanauskas, G. Sucha and D. Harter, �??Fiber-lasers for ultrafast optics,�?? Appl. Phys. B 65, 259�??275 (1997). [CrossRef]
  4. L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus and E.P. Ippen, �??Ultrashort -pulse fiber ring lasers,�?? Appl. Phys. B 65, 277�??294 (1997). [CrossRef]
  5. M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt and L. Turi, �??Additive-pulse-compression mode locking of a neodymium fiber laser,�?? Opt. Lett. 16, 244-245 (1991). [CrossRef] [PubMed]
  6. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus and J. G. Fujimoto, �??Unidirectional ring resonators for self-starting passively mode-locked lasers,�?? Opt. Lett. 18, 220-222 (1993). [CrossRef] [PubMed]
  7. H. A. Haus and E. P. Ippen, �??Self-starting of passively mode-locked lasers,�?? Opt. Lett. 16, 1331-1333 (1991). [CrossRef] [PubMed]
  8. M.H. Ober, M. Hofer and M.E. Ferman, �??42 fs pulse generation from a mode-locked laser starting with a moving mirror,�?? Opt. Lett. 18, 367-369 (1993). [CrossRef] [PubMed]
  9. H. Takara, S. Kawanishi and M. Saruwatari, �??Highly stable, actively mode-locked Er-doped fiber laser utilizing relaxation oscillation as detuning monitor,�?? IEICE Transactions on Electronics, E81-C, 213-219 (1998)
  10. M. Hill, H. de Waardt, G.-D. Khoe and H. J. S. Dorren, �??Short-Pulse generation in interferometers employing semiconductor optical amplifiers,�?? IEEE J. Quantum Electron. 39, 886 �??896 (2003). [CrossRef]
  11. R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert and G. Sahin, �??Tunable monolitch mode-locked lasers on InP with low timing jitter,�?? IEEE Photon. Technol. Lett. 15, 634-636 (2003). [CrossRef]
  12. R.G.M.P. Koumans and R van Roijen, �??Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions,�?? IEEE J. Quantum Electron. 32, 478-492 (1996). [CrossRef]
  13. H. J. S. Dorren, D. Lenstra, Y. Liu, M.T. Hill and G.D. Khoe, �??Nonlinear Polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories,�?? IEEE J. Quantum Electron. 39, 141�??148 (2003). [CrossRef]
  14. N. Calabretta, Y. Liu, F. Huijskens, M.T. Hill, H. de Waardt, G.D. Khoe and H.J.S. Dorren, �??Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier,�?? J. Lightwave Technol. 15, 372-381 (2004). [CrossRef]
  15. X. Yang, D. Lenstra, G.D. Khoe and H.J.S. Dorren, �??Rate equation model of nonlinear polarization rotation induced by ultrashort pulses in a semiconductor optical amplifier,�?? Opt. Commun. 223, 169-179 (2003). [CrossRef]
  16. A.D. Kim, J.N. Kutz and D.J. Muraki, �??Pulse train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,�?? IEEE J. Quantum Electron. 36, 465-471 (2000). [CrossRef]
  17. Z. Li, D. Lenstra, X.Yang, E. Tangdiongga, H. Ju, G.D. Khoe and H.J.S. Dorren, �??Simulation of mode-locked ring laser based on nonlinear polarization rotation in a semiconductor optical amplifier,�?? in preparation.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited