OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 12 — Jun. 14, 2004
  • pp: 2603–2609

Finite-difference time-domain analysis of self-focusing in a nonlinear Kerr film

Hyun-Ho Lee, Kyu-Min Chae, Sang-Youp Yim, and Seung-Han Park  »View Author Affiliations

Optics Express, Vol. 12, Issue 12, pp. 2603-2609 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (941 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By using a finite-difference time-domain method, we analyze self-focusing effects in a nonlinear Kerr film and demonstrate that the near-field intensity distribution at the film surface can reach a stable state at only a few hundred femtoseconds after the incidence of the beam. Our simulations also show that the formation of multiple filamentations in the near-field is quite sensitive to the thickness of the nonlinear film and the power of the laser beam, strongly indicating the existence of nonlinear Fabry-Perot interference effects of the linearly polarized incident light.

© 2004 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(260.5950) Physical optics : Self-focusing

ToC Category:
Research Papers

Original Manuscript: April 20, 2004
Revised Manuscript: May 20, 2004
Published: June 14, 2004

Hyun-Ho Lee, Kyu-Min Chae, Sang-Youp Yim, and Seung-Han Park, "Finite-difference time-domain analysis of self-focusing in a nonlinear Kerr film," Opt. Express 12, 2603-2609 (2004)

Sort:  Journal  |  Reset  


  1. R. Y. Chiao, E. Garmire, and C. H. Townes, �??Self-trapping of optical beams,�?? Phys. Rev. Lett. 13, 479 (1964). [CrossRef]
  2. V. I. Talanov, �??Self-focusing of waves in nonlinear media,�?? JETP Lett. 2, 138 (1965).
  3. J. A. Fleck, Jr., and P. L. Kelley, �??Temporal aspect of the self-focusing of optical beams,�?? Appl. Phys. Lett. 15, 313 (1969). [CrossRef]
  4. M. D. Feit, and J. A. Fleck, Jr., �??Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,�?? J. Opt. Soc. Am. B 5, 633 (1988). [CrossRef]
  5. K. D. Moll, A. L. Gaeta, and G. Fibich, �??Self-similar optical wave collapse: observation of the townes profile,�?? Phys. Rev. Lett. 90, 203902-1 (2003). [CrossRef]
  6. G. Fibich and A. L. Gaeta, �??Critical power for self-focusing in bulk media and in hollow waveguides,�?? Opt. Lett. 25, 335 (2000). [CrossRef]
  7. G. Fibich and B. Ilan, �??Multiple filamentation of circularly polarized beams,�?? Phys. Rev. Lett. 89, 013901-1 (2002). [CrossRef]
  8. G. Fibich and B. Ilan, �??Vectorial and random effects in self-focusing and in multiple filamentation,�?? PHYSICA D 157, 112 (2001). [CrossRef]
  9. G. Fibich, W. Ren, and X.-P. Wang, �??Numerical simulations of self-focusing of ultrafast laser pulses,�?? Phys. Rev. E 67, 056603 (2003). [CrossRef]
  10. R. M. Joseph, A. Taflove, �??Spatial soliton deflection mechanism indicated by FDTD Maxwell�??s equations modeling,�?? IEEE Photon. Tech. Lett. 6, 1251 (1994). [CrossRef]
  11. R. W. Ziolkowski, and J. B. Judkins, �??Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time,�?? J. Opt. Soc. Am. B 10, 186 (1993). [CrossRef]
  12. K. B. Song, J. Lee, J. H. Kim, K. Cho, and S. K. Kim, �??Direct observation of self-focusing with subdiffraction limited resolution using near-field scanning optical microscope,�?? Phy. Rev. Lett. 85, 3842 (2000). [CrossRef]
  13. Y. Choi, J. H. Park, M. R. Kim, W. Jhe, and B. K. Rhee, �??Direct observation of self-focusing near the diffraction limit in polycrystalline silicon film,�?? Appl. Phys. Lett. 78, 856 (2001) [CrossRef]
  14. J. Tominaga, T. Nakano, and N. Atoda, �??An approach for recording and readout beyond the diffraction limit with an Sb thin film,�?? Appl. Phys. Lett. 73, 2078 (1998). [CrossRef]
  15. K. S. Yee, �??Numerical solution of initial boundary value problems involving Maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas Propagat. 14, 302 (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited