OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 12 — Jun. 14, 2004
  • pp: 2616–2624

Tunable photonic-crystal waveguide Mach–Zehnder interferometer achieved by nematic liquid-crystal phase modulation

Chen-Yang Liu and Lien-Wen Chen  »View Author Affiliations

Optics Express, Vol. 12, Issue 12, pp. 2616-2624 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (694 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical interferometers. We propose a novel tunable PC waveguide Mach–Zehnder interferometer based on nematic liquid crystals and investigate its interference properties numerically by using the finite-difference time-domain method. We can change the refractive indices of liquid crystals by rotating the directors of the liquid crystals. Then we can control the phase of light propagation in a PC waveguide Mach-Zehnder interferometer. The interference mechanism is a change in the refractive indices of liquid-crystal waveguides. The novel interferometer can be used either as an optically controlled on–off switch or as an amplitude modulator in optical circuits.

© 2004 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Research Papers

Original Manuscript: April 12, 2004
Revised Manuscript: May 26, 2004
Published: June 14, 2004

Chen-Yang Liu and Lien-Wen Chen, "Tunable photonic-crystal waveguide Mach�??Zehnder interferometer achieved by nematic liquid-crystal phase modulation," Opt. Express 12, 2616-2624 (2004)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N. J., 1995).
  3. E. Centeno and D. Felbacq, �??Guiding waves with photonic crystals,�?? Opt. Commun. 160, 57-60 (1999). [CrossRef]
  4. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, �??Novel application of photonic band gap materials: low-loss bends and high-Q cavities,�?? J. Appl. Phys. 75, 4753-4755 (1994). [CrossRef]
  5. T. Baba, N. Fukaya, and J. Yonekura, �??Observation of light propagation in photonic crystal optical waveguides with bends,�?? Electron. Lett. 35, 654-656 (1999). [CrossRef]
  6. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O�??Brien, P. D. Dapkus, and W. K. Marshall, �??Two-dimensional photonic crystal Mach�??Zehnder interferometers,�?? Appl. Phys. Lett. 84, 460-462 (2004). [CrossRef]
  7. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, �??Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,�?? J. Appl. Phys. 91, 922-929 (2002). [CrossRef]
  8. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, �??Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,�?? Appl. Phys. Lett. 75, 932-934 (1999). [CrossRef]
  9. H. Takeda and K. Yoshino, �??Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,�?? J. Appl. Phys. 92, 5958-5662 (2002).
  10. H. Takeda and K. Yoshino, �??Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,�?? Phys. Rev. B 67, 073106 (2003). [CrossRef]
  11. H. Takeda and K. Yoshino, �??Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals composed of semiconductors depending on temperature,�?? Opt. Commun. 219, 177-182 (2003). [CrossRef]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, Boston, Mass., 1998).
  13. M. Koshiba, Y. Tsuji, and Saski, �??High-performance absorbing boundary conditions for photonic crystal waveguide simulations,�?? IEEE Microwave Wireless Compon. Lett. 11, 152-154 (2001). [CrossRef]
  14. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, and T. F. Krauss, �??Optical and confinement properties of two-dimensional photonic crystals,�?? J. Lightwave Technol. 17, 2063-2077 (1999). [CrossRef]
  15. I.-C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993). [CrossRef]
  16. Y. Shimoda, M. Ozaki, and K. Yoshino, �??Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,�?? Appl. Phys. Lett. 79, 3627-3629 (2001). [CrossRef]
  17. A. V. Zakharov and L. V. Mirantsev, �??Dynamic and dielectric properties of liquid crystals,�?? Phys. Solid State 45, 183-188 (2003). [CrossRef]
  18. S. Khalfallah, P. Dubreuil, R. Legros, C. Fontaine, A. Munoz-Yagüe, B. Beche, H. Porte, R. Warno, and M. Karpierz, �??Highly unbalanced GaAlAs-GaAs integrated Mach�??Zehnder interferometer for coherence modulation at 1.3 µm,�?? Opt. Commun. 167, 67-79 (1999). [CrossRef]
  19. Y. Sugimoto, Y. Tanaka, N. Ikeda, T. Yang, H. Nakamura, K. Asakawa, K. Inoue, T. Maruyama, K. Miyashita, K. Ishida, and Y. Watanabe, �??Design, fabrication, and characterization of coupling-strength-controlled directional coupler based on two-dimensional photonic-crystal slab waveguides,�?? Appl. Phys. Lett. 83, 3236-3238 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited