OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 12 — Jun. 14, 2004
  • pp: 2699–2709

Ultrashort pulse propagation in grating-assisted codirectional couplers

Mykola Kulishov and José Azaña  »View Author Affiliations

Optics Express, Vol. 12, Issue 12, pp. 2699-2709 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (159 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrashort pulse propagation through grating-assisted codirectional couplers (GACCs) operating in the linear regime is theoretically investigated. For this purpose, the temporal responses of uniform GACCs to ultrashort optical pulses are calculated and the effects of varying the different physical grating parameters (e.g., length and coupling strength) on these temporal responses are evaluated. We will show that the most interesting pulse re-shaping operations occur typically for the “energy receptor” mode and that depending on the length and coupling strength of the uniform perturbation one can achieve very different temporal shapes at the output of the device, including triangular pulses, square temporal waveforms as well as sequences of equalized multiple pulses. Moreover, the temporal scales of the pulses generated from a GACC are generally much shorter (in more than one order of magnitude) than those that can be generated from an equivalent Bragg grating (with the same grating length).

© 2004 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(250.5530) Optoelectronics : Pulse propagation and temporal solitons
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Research Papers

Original Manuscript: May 10, 2004
Revised Manuscript: May 30, 2004
Published: June 14, 2004

Mykola Kulishov and José Azaña, "Ultrashort pulse propagation in grating-assisted codirectional couplers," Opt. Express 12, 2699-2709 (2004)

Sort:  Journal  |  Reset  


  1. R. Kashyap, Fiber Bragg Gratings, Academic Press, San Diego, (1999).
  2. Y. Chen and A. W. Snyder, �??Grating-assisted couplers,�?? Opt. Lett. 16, 217-219 (1991). [CrossRef] [PubMed]
  3. W. Huang. B. E. Little and S. K. Chaudhuri, �??A new approach to grating-assisted couplers,�?? J. Lightwave Technol. 9, 721-727 (1991). [CrossRef]
  4. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, �??Long-period fiber-grating-based gain equalizers,�?? Opt. Lett. 21, 336-338 (1996). [CrossRef] [PubMed]
  5. J. E. Sipe, C. Martijn de Sterke, and B. J. Eggleton, �??Rigorous derivation of coupled mode equations for short, high-intensity grating-coupled, co-propagating pulses,�?? J. Mod. Opt. 49, 1437-1452 (2002). [CrossRef]
  6. K. B. Hill, D. J. Brady, �??Impulse responses of strong reflection holograms,�?? Appl. Opt. 32, 4305-4316 (1993). [CrossRef] [PubMed]
  7. K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, R. Kashyap, �??Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings,�?? Electron. Lett. 30, 995-996 (1994). [CrossRef]
  8. D. Taverner, D. J. Richardson, J.-L. Archambault, L. Reekie, P. St. J. Russell, and D. N. Payne, �??Experimental investigation of picosecond pulse reflection from fiber gratings,�?? Opt. Lett. 20, 282-284 (1995). [CrossRef] [PubMed]
  9. L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, S. Juma, �??Ultrashort pulse propagation in multiple-grating fiber structures,�?? Opt. Lett. 22, 402-405 (1997). [CrossRef] [PubMed]
  10. L. R. Chen, S. D. Benjamin, H. Jung, P.W.E. Smith, and J. E. Sipe,"Dynamics of Ultrashort Pulse Propagation Through Fiber Gratings," Opt. Express 1, 242-249 (1997), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-9-242">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-9-242</a> [CrossRef] [PubMed]
  11. Ph. Emplit, M. Haelterman, R. Kashyap and M. De Lathouwer, �??Fiber Bragg grating for optical dark soliton generation,�?? IEEE Photon. Technol. Lett. 9, 1122-1124 (1997) [CrossRef]
  12. P. Petropoulos, M. Ibsen, A. D. Ellis and D. J. Richardson, �??Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,�?? J. Lightwave Technol. 19, 746-752 (2001). [CrossRef]
  13. M. Marano, S. Longhi, P. Laporta, M. Belmonte and B. Agogliati, �??All-optical square-pulse generation and multiplication at 1.5 µm by use of a novel class of fiber Bragg gratings,�?? Opt. Lett. 26, 1615-1617 (2001). [CrossRef]
  14. N. K. Berger, B. Levit, S. Atkins and B. Fischer, �??Repetition-rate multiplication of optical pulses using uniform fiber Bragg gratings,�?? Opt. Commun. 221, 331-335 (2003). [CrossRef]
  15. Azaña, R. Slavík. P. Kockaert, L.R. Chen, S. LaRochelle, �??Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings,�?? IEEE J. Lightwave Technol. 21, 1490-1498 (2003). [CrossRef]
  16. R. R. A. Syms, S. Makrimichalou, A. S. Holmes, �??High-speed optical signal processing potential of grating-coupled waveguide filters,�?? Appl. Opt. 30, 3762 -3769 (1991). [CrossRef] [PubMed]
  17. J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, �??Nonlinear pulse propagation in long-period fiber gratings: Theory and experiment,�?? IEEE J. Select. Topics in Quantum Electron. 3, 1232-1245 (1997). [CrossRef]
  18. R. R. A. Syms, and S. Makrimichalou, �??Impulse response of grating-coupled waveguide filters by optical path integration in the time domain,�?? Appl. Opt. 31, 6453 - 6458 (1992). [CrossRef] [PubMed]
  19. M. Gioannini, and I. Montrosset, �??Time domain numerical model for linear and nonlinear grating assisted co-directional coupler,�?? Opt. Quantum Electron. 36, 119-131 (2004). [CrossRef]
  20. R. Feced, M. N. Zervas, �??Efficient inverse scattering algorithm for the design of grating-assisted codirectional mode couplers,�?? J. Opt. Soc. Am. A 17, 1573-1582 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig.3.

Supplementary Material

» Media 1: MOV (998 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited