OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 12 — Jun. 14, 2004
  • pp: 2716–2722

MMI devices with weak guiding designed in three dimensions using a genetic algorithm

Brian R. West and Seppo Honkanen  »View Author Affiliations

Optics Express, Vol. 12, Issue 12, pp. 2716-2722 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (172 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the design of weakly guided multimode interference (MMI) devices using a genetic algorithm. For devices exhibiting a nonnegligible vertical waveguide offset, such as those produced using ion exchange in glass, three-dimensional modeling is required to properly evaluate the device performance. A combination of semivectorial finite difference modeling in two transverse dimensions and mode propagation analysis (MPA) in the propagation direction is used to evaluate the merit of each trial design. An example is provided of a 1×4 power splitter designed for ion exchange, which shows considerable improvement over that obtained by self-imaging theory.

© 2004 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

Original Manuscript: March 18, 2004
Revised Manuscript: June 2, 2004
Published: June 14, 2004

Brian West and Seppo Honkanen, "MMI devices with weak guiding designed in three dimensions using a genetic algorithm," Opt. Express 12, 2716-2722 (2004)

Sort:  Journal  |  Reset  


  1. L.H. Spiekman, Y.S.Oei, E.G. Metaal, F.H. Green, I. Moerman, and M.K. Smit, �??Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,�?? IEEE Photon. Technol. Lett. 6, 1008-1010 (1994). [CrossRef]
  2. T. Rasmussen, J.K. Rasmussen, and J.H. Povlsen, �??Design and performance evaluation of 1-by-64 multimode interference power splitter for optical communications,�?? J. Lightwave Technol. 13, 2069-2074 (1995). [CrossRef]
  3. A. Bakhtazad, J.N. McMullin, C.J. Haugen, and R.G. DeCorby, �??MMI multiplexer for dual-channel erbium-doped waveguide amplifiers,�?? Opt. Express 9, 178-183 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?uri=OPEX-9-4-178">http://www.opticsexpress.org/abstract.cfm?uri=OPEX-9-4-178</a>. [CrossRef] [PubMed]
  4. D. Hah, E. Yoon, and S. Hong, �??An optomechanical pressure sensor using multimode interference couplers with polymer waveguides on a thin p+-Si membrane,�?? Sens. Act. A 79, 204-210 (2000). [CrossRef]
  5. A. Irace and G. Breglio, �??All-silicon optical temperature sensor based on multi-mode interference,�?? Opt. Express 11, 2807-2812 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2807">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2807</a>. [CrossRef] [PubMed]
  6. P.A. Besse, M. Bachmann, H. Melchior, L.B. Soldano, and M.K. Smit, �??Optical bandwidth and fabrication tolerances of multimode interference couplers,�?? J. Lightwave Technol. 12, 1004-1009 (1994). [CrossRef]
  7. L.B. Soldano and E.C.M. Pennings, �??Optical multi-mode interference devices based on self-imaging: principles and applications,�?? J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  8. S.E. Yliniemi, B.R. West, T.T. Aalto, P. Madasamy, N. Peyghambarian, and S. Honkanen, �??Buried ionexchanged glass waveguides featuring low birefringence with a broad range of waveguide widths,�?? in Integrated Optics and Photonic Integrated Circuits, G. C. Righini and S. Honkanen, eds., Proc. SPIE 5451, no. 87 (2004).
  9. D.F. Geraghty, D. Provenzano, M.M. Morrell, J. Ingenhoff, B. Drapp, S. Honkanen, A. Yariv, and N. Peyghambarian, �??Polarisation-independent Bragg gratings in ion-exchanged glass channel waveguides,�?? Elect. Lett. 36, 531-532 (2000). [CrossRef]
  10. P. Madasamy, B.R. West, M.M. Morrell, D.F. Geraghty, S. Honkanen, and N. Peyghambarian, �??Buried ion-exchanged glass waveguides: Burial-depth dependence on the waveguide width,�?? Opt. Lett. 28, 1132- 1134 (2003). [CrossRef] [PubMed]
  11. Q. Wang, J. Lu, and S. He, �??Optimal design of a multimode interference coupler using a genetic algorithm,�?? Opt. Comm. 209, 131-136 (2002). [CrossRef]
  12. R. Ulrich and T. Kamiya, �??Resolution of self-images in planar optical waveguides,�?? J. Opt. Soc. Amer. 68, 583-592 (1978). [CrossRef]
  13. A.R. Gupta, �??Optimization of access waveguide width of multimode interference (MMI) couplers,�?? Opt. Commun. 221, 99-103 (2003). [CrossRef]
  14. B.R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, Optical Sciences Center, The University of Arizona, 1630 E. University Blvd., Tucson, AZ, 85721, are preparing a manuscript to be called �??Accurate modeling of ion-exchanged glass waveguide structures.�??
  15. C. M. Kim and R. V. Ramaswamy, �??Modeling of graded-index channel waveguides using nonuniform finite difference method,�?? J. Lightwave Technol. 7, 1581-1589 (1989). [CrossRef]
  16. J. Leuthold, J. Eckner, E. Gamper, P.A. Besse, and H. Melchior, �??Multimode interference couplers for the conversion and combining of zero- and first-order modes,�?? J. Lightwave Technol. 16, 1228-1239 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited