OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 12 — Jun. 14, 2004
  • pp: 2731–2738

Possibility of self-similar pulse evolution in a Ti:sapphire laser

F. Ö. Ilday, F. W. Wise, and F. X. Kaertner  »View Author Affiliations

Optics Express, Vol. 12, Issue 12, pp. 2731-2738 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (595 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical investigation of the possibility of achieving self-similar pulse propagation in a solid-state laser is presented. Limited group-velocity dispersion hinders true self-similar pulse evolution, but an intermediate regime that exhibits some of the characteristic features (and offers some of the benefits) of self-similar propagation can be reached. This regime of operation offers the potential to increase the pulse energy by at least an order of magnitude compared to energies obtained in the usual operation of Kerr-lens mode-locked lasers with anomalous dispersion. Ti:sapphire lasers that generate pulse energies as high as one microjoule and peak powers of ~100 MW should be possible based on this mode of operation.

© 2004 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.5540) Ultrafast optics : Pulse shaping
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Research Papers

Original Manuscript: April 26, 2004
Revised Manuscript: June 3, 2004
Published: June 14, 2004

F. Ilday, F. Wise, and F. Kaertner, "Possibility of self-similar pulse evolution in a Ti:sapphire laser," Opt. Express 12, 2731-2738 (2004)

Sort:  Journal  |  Reset  


  1. D. E. Spence, P. N. Kean, and W. Sibbett, �??60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,�?? Opt. Lett. 16, 42-44 (1991). [CrossRef] [PubMed]
  2. J. Zhou, G. Taft, C. P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, �??Pulse evolution in a broad-bandwidth Ti:sapphire laser,�?? Opt. Lett. 19, 1149-1151 (1994). [CrossRef] [PubMed]
  3. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, �??Ultrabroadband femtosecond lasers,�?? IEEE J. Quantum Electron. 30, 1100-1114 (1994). [CrossRef]
  4. U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, �??Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,�?? Opt. Lett. 24 411-413 (1999). [CrossRef]
  5. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, �??Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser pro-ducing pulses in the two-cycle regime,�?? Opt. Lett. 24, 631-633 (1999). [CrossRef]
  6. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, �??77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,�?? Opt. Lett. 18, 1080-1082 (1993). [CrossRef] [PubMed]
  7. S. Chen, F. X. Kartner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, �??Dispersion-managed mode locking,�?? J. Opt. Soc. Am. B 16, 1999-2004 (1999). [CrossRef]
  8. C. Jirauschek, F. X. Kartner, U. Morgner, �??Spatiotemporal Gaussian pulse dynamics in Kerr-lens mode-locked lasers,�?? J. Opt. Soc. Am. B 20, 1356-1368 (2003). [CrossRef]
  9. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, �??Cavity-dumped femtosecond Kerr-lens mode-locked Ti:Al2O3 laser,�?? Opt. Lett. 18, 1822 (1993). [CrossRef] [PubMed]
  10. S. H. Cho, F. X. Kartner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, �??Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion,�?? Opt. Lett. 26, 560-562 (2001). [CrossRef]
  11. A. M. Kowalevicz, A. Tucay Zare, F. X. Kartner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, G. Angelow, �??Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens mode-locked Ti:Al2O3 oscillator,�?? Opt. Lett. 28, 1597-1599 (2003). [CrossRef] [PubMed]
  12. O. E. Martinez, R. L. Fork, and J. P. Gordon, �??Theory of passively mode-locked laser including self-phase modulation and group-velocity dispersion,�?? Opt. Lett. 9, 156-158 (1984). [CrossRef] [PubMed]
  13. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, �??Analytic theory of additive pulse and Kerr-lens mode locking,�?? IEEE J. Quantum Electron. 28, 2086-2096 (1992). [CrossRef]
  14. B. Proctor, E. Westwig, and F. Wise, �??Operation of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion,�?? Opt. Lett. 18, 1654 (1993). [CrossRef] [PubMed]
  15. F. O. Ilday, H. Lim, J. R. Buckley, F. W. Wise, and W. G. Clark, �??Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser,�?? Opt. Lett. 28, 1365-1367 (2003). [CrossRef] [PubMed]
  16. F. O. Ilday, J. Buckley, F. W.Wise, and W. G. Clark, �??Self-similar evolution of parabolic pulses in a laser,�?? Phys. Rev. Lett. 92, 213902 (2004 [CrossRef] [PubMed]
  17. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation and amplification of parabolic pulses in optical fibers,�?? Phys. Rev. Lett. 84, 6010-6013 (2000). [CrossRef] [PubMed]
  18. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, �??Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,�?? Opt. Lett. 25, 1753-1755 (2000). [CrossRef]
  19. A. C. Peacock, R. J. Kruhlak, J. D. Harvey, and J. M. Dudley, �??Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion,�?? Opt. Commun. 206, 171-177 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited