OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 12 — Jun. 14, 2004
  • pp: 2795–2809

Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions

H.P. Uranus and H.J.W.M. Hoekstra  »View Author Affiliations


Optics Express, Vol. 12, Issue 12, pp. 2795-2809 (2004)
http://dx.doi.org/10.1364/OPEX.12.002795


View Full Text Article

Enhanced HTML    Acrobat PDF (2632 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A finite-element-based vectorial optical mode solver is used to analyze microstructured optical waveguides. By employing 1st-order Bayliss-Gunzburger-Turkel-like transparent boundary conditions, both the real and imaginary part of the modal indices can be calculated in a relatively small computational domain. Results for waveguides with either circular or non-circular microstructured holes, solid- or air-core will be presented, including the silica-air Bragg fiber recently demonstrated by Vienne et al. (Post-deadline Paper PDP25, OFC 2004). The results of solid-core structures are in good agreement with the results of other methods while the results of air-core structure agree to the experimental results.

© 2004 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Research Papers

History
Original Manuscript: May 14, 2004
Revised Manuscript: June 8, 2004
Published: June 14, 2004

Citation
Henri Uranus and H. Hoekstra, "Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions," Opt. Express 12, 2795-2809 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-12-2795


Sort:  Journal  |  Reset  

References

  1. J.C. Knight, T.A. Birks, P.S.J. Russell, and D.M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  2. P. Russell, �??Photonic Crystal Fibers,�?? Science 299, 358-362 (2003). [CrossRef] [PubMed]
  3. Y. Fink, D.J. Ripin, S. Fan, C. Chen, J.D. Joannopoulos, and E.L. Thomas, �??Guiding optical light in air using an all-dielectric structure,�?? J. Lightwave Technol. 17, 2039-2041 (1999). [CrossRef]
  4. A. Ferrando, E. Silvestre, J.J. Miret, and P. Andres, �??Nearly zero ultraflattened dispersion in photonic crystal fibers,�?? Opt. Lett. 25, 790-792 (2000). [CrossRef]
  5. J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, and P.S.J. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? Photonics Technol. Lett. 12, 807-809 (2000). [CrossRef]
  6. T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, �??Confinement losses in microstructured optical fibers,�?? Opt. Lett. 26, 1660-1662 (2001). [CrossRef]
  7. T.A. Birks, J.C. Knight, and P.S.J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  8. S.G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T.D. Engeness, M. Soljacic, S.A. Jacobs, J.D. Joannopoulos, and Y. Fink, �??Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,�?? Opt. Express 9, 748-779 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</a>. [CrossRef] [PubMed]
  9. I.M. Basset and A. Argyros, �??Elimination of polarization degeneracy in round waveguides,�?? Opt. Express 10, 1342-1346 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1342">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1342</a>. [CrossRef]
  10. A. Argyros, N. Issa, I. Basset, and M. van Eijkelenborg, �??Microstructured optical fiber for single-polarization air guidance,�?? Opt. Lett. 29, 20-22 (2004). [CrossRef] [PubMed]
  11. A. Ferrando, E. Solvestre, J.J. Miret, P. Andres, M.V. Andres, �??Full-vector analysis of a realistic photonic crystal fiber,�?? Opt. Lett. 24, 276-278 (1999). [CrossRef]
  12. W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng, �??Supercell lattice method for photonic crystal fibers,�?? Opt. Express 11, 980-991 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-980">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-980</a>. [CrossRef] [PubMed]
  13. T.P. White, B.T. Kuhlmey, R.C. McPhedran, D. Maystre, R. Renversez, C.M. de Sterke, and L.C. Botten, �??Multipole method for microstructured optical fibers. I. Formulation,�?? J. Opt. Soc. Am B 19, 2322-2330 (2002). [CrossRef]
  14. N.A. Issa and L. Poladian, �??Vector wave expansion method for leaky modes of microstructured optical fibers,�?? J. Lightwave Technol. 21, 1005-1012 (2003). [CrossRef]
  15. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, �??Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,�?? Opt. Express 10, 54-59 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-54">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-1-54</a>. [CrossRef] [PubMed]
  16. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  17. C.P. Yu and H.C. Chang, �??Applications of the finite difference mode solution method to photonic crystal structures,�?? Opt. Quantum Electron. 36, 145-163 (2004). [CrossRef]
  18. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, �??Complete analysis of the characteristics of propagation into photonic crystal fibers by finite element method,�?? Optical Fiber Technol. 6, 181-191 (2000). [CrossRef]
  19. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, �??Holey fiber analysis through the finite element method,�?? Photonics Tech. Lett. 14, 1530-1532 (2002). [CrossRef]
  20. M. Koshiba, �??Full-vector analysis of photonic crystal fibers using the finite element method,�?? IEICE Trans. Electron. E85-C, 881-888 (2002).
  21. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, S. Selleri, �??Leakage properties of photonic crystal fibers,�?? Opt. Express 10, 1314-1319 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314</a>. [CrossRef] [PubMed]
  22. K. Saitoh and M. Koshiba, �??Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,�?? Opt. Express 11, 3100-3109 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100</a> [CrossRef] [PubMed]
  23. H.P. Uranus, H.J.W.M. Hoekstra, and E. van Groesen, �??Galerkin finite element scheme with Bayliss-Gunzburger-Turkel-like boundary conditions for vectorial optical mode solver,�?? J. Nonlinear Optical Phys. Materials (to be published).
  24. A. Bayliss, M. Gunzburger, and E. Turkel, �??Boundary conditions for the numerical solution of elliptic equations in exterior regions,�?? SIAM J. Appl. Math. 42, 430-451 (1982). [CrossRef]
  25. H.E. Hernandez-Figueroa, F.A. Fernandez, Y. Lu, and J.B. Davies, �??Vectorial finite element modeling of 2D leaky waveguides,�?? Trans. Magnetics 31, 1710-1713 (1995). [CrossRef]
  26. R. Guobin, W. Zhi, L. Shuqin, and J. Shuisheng, �??Mode classification and degeneracy in photonic crystal fibers,�?? Opt. Express 11, 1310-1321 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-11-1310">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-11-1310</a>. [CrossRef] [PubMed]
  27. M. Koshiba and K. Saitoh, �??Numerical verification of degeneracy in hexagonal photonic crystal fibers,�?? Photonics Technol. Lett. 13, 1313-1315 (2001). [CrossRef]
  28. I.H. Malitson, �??Interspecimen comparison of the refractive index of fused silica,�?? J. Opt. Soc. Am. 55, 1205-1209 (1965). [CrossRef]
  29. L. Poladian, N.A. Issa, and T.M. Monro, �??Fourier decomposition algorithm for leaky modes of fibres with arbitrary geometry,�?? Opt. Express 10, 449-454 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-10-449">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-10-449</a>. [CrossRef] [PubMed]
  30. T.M. Monro D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, �??Modeling large air fraction holey optical fibers,�?? J. Lightwave Technol. 18, 50-56 (2000). [CrossRef]
  31. G. Vienne, Y. Xu, C. Jakobsen, H.J. Deyerl, T.P. Hansen, B.H. Larsen, J.B. Jensen, T. Sorensen, M. Terrel, Y. Huang, R. Lee, N.A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, �??First demonstration of air-silica Bragg fiber,�?? Post Deadline Paper PDP25, Optical Fiber Conference 2004, Los Angeles, 22-27 Feb. 2004.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited