OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 15 — Jul. 26, 2004
  • pp: 3353–3366

Nonlinearity enhancement in finite coupled-resonator slow-light waveguides

Yan Chen and Steve Blair  »View Author Affiliations

Optics Express, Vol. 12, Issue 15, pp. 3353-3366 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (924 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we derive the exact dispersion relation of one dimensional periodic coupled-resonator optical waveguides of finite length, from which the reduced group velocity of light is obtained. We show that the group index strongly depends on the number of cavities in the system, especially for operation at the center frequency. The nonlinear phase sensitivity shows an enhancement proportional to the square of the group index (or light slowing ratio). Aperiodic coupled ring-resonator optical waveguides with optimized linear properties are then synthesized to give an almost ideal nonlinear phase shift response. For a given application and bandwidth requirement, the nonlinear sensitivity can be increased by either decreasing resonator length or by using higher-order structures. The impact of optical loss, including linear and two-photon absorption is discussed in post-analysis.

© 2004 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

Original Manuscript: May 18, 2004
Revised Manuscript: July 9, 2004
Published: July 26, 2004

Yan Chen and Steve Blair, "Nonlinearity enhancement in finite coupled-resonator slow-light waveguides," Opt. Express 12, 3353-3366 (2004)

Sort:  Journal  |  Reset  


  1. M. Bayindir, B. Temelkuran, and E. Ozbay �??Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,�?? Phys. Rev. Lett. 84, 2140-2143 (2000). [CrossRef] [PubMed]
  2. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama �??Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  3. A. Melloni, R. Costa, P. Monguzzi, and M. Martinelli �??Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,�?? Opt. Lett. 28, 1567-1569 (2003). [CrossRef] [PubMed]
  4. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer �??Coupled-resonator optical waveguide: a proposal and analysis,�?? Opt. Lett. 24, 711-713 (1999). [CrossRef]
  5. S. Mookherjea, D. S. Cohen, and A. Yariv �??Nonlinear dispersion in a coupled-resonator optical waveguide,�?? Opt. Lett. 27, 933-935 (2002). [CrossRef]
  6. A. Melloni, F.Morichetti, and M. Martinelli �??Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,�?? Opt. Quantum Electron. 35, 365-379 (2003). [CrossRef]
  7. E. Ozbay, M. Bayindir, I. Bulu, and E. Cubuku �??Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures,�?? IEEE J. Quantum Electron. 38, 837-843 (2002). [CrossRef]
  8. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos �??Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,�?? J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  9. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé �??Miniband transmission in a photonic crystal coupled-resonator optical waveguide,�?? Opt. Lett. 26, 1019-1021 (2001). [CrossRef]
  10. Y. Chen, G. Pasrija, B. Farhang-Boroujeny, and S. Blair �??Engineering the nonlinear phase shift,�?? Opt. Lett. 28, 1945-1947 (2003). [CrossRef] [PubMed]
  11. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv �??Matrix analysis of microring coupled-resonator optical waveguides,�?? Opt. Express 12, 90-103 (2004). [CrossRef] [PubMed]
  12. J. M. Bendickson, J. P. Dowling, and M. Scalora �??Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,�?? Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]
  13. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss �??Planar photonic crystal coupled cavity waveguides,�?? IEEE J. Sel. Top. Quantum Electron. 8, 909-918 (2002). [CrossRef]
  14. A. Melloni and M. Martinelli �??Synthesis of direct-coupled-resonators bandpass filters for WDM systems,�?? J. Lightwave Technol. 20, 296-303 (2002). [CrossRef]
  15. C. K. Madsen and J. H. Zhao Optical Filter Design and Analysis: A Signal Processing Approach. Wiley 1999.
  16. H. M. Gibbs Optical Bistability : Controlling Light with Light. Academic Press, Inc. 1985.
  17. D. V. Tishinin, P. D. Dapkus, A. E. Bond, I. Kim, C. K. Chin, and J. O'Brien �??Vertical resonant couplers with precise coupling efficiency control fabricated by wafer bonding,�?? IEEE Photon. Technol. Lett. 11, 1003-1005 (1999). [CrossRef]
  18. S. Blair, J. Heebner, and R. Boyd �??Beyond the absorption-limited nonlinear phase shift with microring resonators,�?? Opt. Lett. 27, 357-359 (2002). [CrossRef]
  19. Y. Chen and S. Blair �??Nonlinear phase shift of cascaded microring resonators,�?? J. Opt. Soc. Am. B 20, 2125-2132 (2003). [CrossRef]
  20. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco �??Two- photon absorption as a limitation to all-optical switching,�?? Opt. Lett. 14, 1140-1142 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited