OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 16 — Aug. 9, 2004
  • pp: 3848–3864

Paraxial localized waves in free space

Ioannis M. Besieris and Amr M. Shaarawi  »View Author Affiliations


Optics Express, Vol. 12, Issue 16, pp. 3848-3864 (2004)
http://dx.doi.org/10.1364/OPEX.12.003848


View Full Text Article

Enhanced HTML    Acrobat PDF (412 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Subluminal, luminal and superluminal localized wave solutions to the paraxial pulsed beam equation in free space are determined. A clarification is also made to recent work on pulsed beams of arbitrary speed which are solutions of a narrowband temporal spectrum version of the forward pulsed beam equation.

© 2004 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(320.5540) Ultrafast optics : Pulse shaping
(350.5500) Other areas of optics : Propagation

ToC Category:
Research Papers

History
Original Manuscript: May 7, 2004
Revised Manuscript: July 29, 2004
Published: August 9, 2004

Citation
Ioannis Besieris and Amr Shaarawi, "Paraxial localized waves in free space," Opt. Express 12, 3848-3864 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-16-3848


Sort:  Journal  |  Reset  

References

  1. R. W. Ziolkowski, ???Localized transmission of electromagnetic energy,??? Phys. Rev. A 39, 2005-2033 (1989). [CrossRef] [PubMed]
  2. R. W. Ziolkowski, I. M. Besieris and A. M. Shaarawi, ???Localized wave representations of acoustic and electromagnetic radiation,??? Proc. IEEE 79, 1371-1378 (1991). [CrossRef]
  3. I. M. Besieris, M. Abdel-Rahman, A. M. Shaarawi and A. Chatzipetros, ???Two fundamental representations of localized pulse solutions to the scalar wave equation,??? Progr. Electromagn. Res. (PIER) 19, 1-48 (1998). [CrossRef]
  4. E. Recami, ???On localized ???X-shaped??? superluminal solutions to Maxwell???s equations,??? Physica A 252, 586-610 (1998). [CrossRef]
  5. J. Salo, J. Fagerholm, A. T. Friberg and M. M. Salomaa, ???Unified description of nondiffracting X and Y waves,??? Phys. Rev. E 62, 4261-4275 (2000). [CrossRef]
  6. P. Saari and K. Reivelt, ???Generation and classification of localized waves by Lorentz transformations in Fourier space,??? Phys. Rev. E 65, 036612 1-12 (2004).
  7. S. Longhi, ???Spatial-temporal Gauss-Laguerre waves in dispersive media,??? Phys. Rev. E 68, 066612 1-6 (2003). [CrossRef]
  8. C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz and J. Trull, ???Nonlinear electromagnetic X waves,??? Phys. Rev. Lett. 90, 170406 1-4 (2003). [CrossRef]
  9. R. Grunwald, V. Kebbel, U. Griebner, U. Neumann, A. Kummrow, M. Rini, E. T. J. Nibbering, M. Piche, G. Rousseau and M. Fortin, ???Generation and characterization of spatially and temporally localized few-cycle optical wave packets,??? Phys. Rev. A 67, 063820 1-5 (2003). [CrossRef]
  10. E. Heyman, ???Pulsed beam propagation in an inhomogeneous medium,??? IEEE Trans. Antennas Propag. 42, 311-319 (1994). [CrossRef]
  11. M. A. Porras, ???Ultrashort pulsed Gaussian light beams,??? Phys. Rev. E 58, 1086-1093 (1998). [CrossRef]
  12. M. A. Porras, ???Nonsinusoidal few-cycle pulsed light beams in free space,??? J. Opt. soc. Am. B 16, 1468-1474 (1999). [CrossRef]
  13. A. Erdelyi, Tables of Integral Transforms (Academic Press, New York, 1980), Vol. I.
  14. S. M. Feng, H. G. Winful and R. W. Hellwarth, ???Spatiotemporal evolution of focused single-cycle electromagnetic pulses,??? Phys. Rev. E 59, 4630-4649 (1999). [CrossRef]
  15. P. Saari, ???Evolution of subcycle pulses in nonparaxial Gaussian beams," Opt. Express, 8, 590-598 (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-590.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-590.</a> [CrossRef] [PubMed]
  16. J. Y. Lu and J. F. Greenleaf, ???Nondiffracting X waves-exact solutions to the free-space wave equation and their finite aperture realizations,??? IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19-31 (1992). [CrossRef] [PubMed]
  17. R. W. Ziolkowski, I. M. Besieris and A. M. Shaarawi, ???Aperture realizations of the exact solutions to homogeneous-wave equations,??? J. Opt. Soc. Am. A 10, 75-87 (1993). [CrossRef]
  18. A. Wunsche, ???Embedding of focus wave modes into a wider class of approximate wave functions,??? J. Opt. Soc. Am. A 6, 1661-1668 (1989). [CrossRef]
  19. I. M. Besieris, M. Abdel-Rahman and A. M. Shaarawi, ???Symplectic (nonseparable) spectra and novel, slowly decaying beam solutions to the complex parabolic equation,??? URSI Digest, p. 281 (abstract), IEEE AP-S Intern. Symp. and URSI Natl. Meeting, Baltimore, MD, July 21-26 (1996).
  20. S. Longhi, ???Gaussian pulsed beams with arbitrary speeds,??? Opt. Express, 12, 935-940 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-935.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-935.</a> [CrossRef] [PubMed]
  21. P. A. Be???langer, ???Lorentz transformations of packet-like solutions of the homogeneous wave equation,???J. Opt. Soc. Am. A 3, 541-542 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited