OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 17 — Aug. 23, 2004
  • pp: 3934–3939

Propagation loss reduction of photonic crystal slab waveguides by microspheres

Chii-Chang Chen, Ya-Lun Tsai, Che-Lung Hsu, and Jenq-Yang Chang  »View Author Affiliations


Optics Express, Vol. 12, Issue 17, pp. 3934-3939 (2004)
http://dx.doi.org/10.1364/OPEX.12.003934


View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dielectric microspheres are theoretically studied to reduce the propagation loss of Si-based photonic crystal slab waveguides. Two-dimensional photonic crystal formed by etched air hole can act as a template for microsphere sedimentation. The analytical results show that the transmission of the photonic crystal slab waveguides with microspheres can be enhanced to be around twice that without microspheres.

© 2004 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7400) Optical devices : Waveguides, slab
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Research Papers

History
Original Manuscript: June 14, 2004
Revised Manuscript: August 2, 2004
Published: August 23, 2004

Citation
Chii-Chang Chen, Ya-Lun Tsai, Che-Lung Hsu, and Jenq-Yang Chang, "Propagation loss reduction of photonic crystal slab waveguides by microspheres," Opt. Express 12, 3934-3939 (2004)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-3934


Sort:  Journal  |  Reset  

References

  1. A Chutinan, M. Okano, and S. Noda, �??Wider bandwidth with high transmission through waveguide bends, in two-dimensional photonic crystal slabs,�?? Appl. Phys. Lett. 80, 1698-1700 (2002). [CrossRef]
  2. S. J. McNab, N. Moll, Y. A. Vlasov, �??Ultra-low loss photonic integrated circuit withmembrane-type photonic crystal waveguides,�?? Opt. Express 11, 2927-2939 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927</a> [CrossRef] [PubMed]
  3. A. Talneau, L. Le Gouezigou and N. Bouadma, M. Kafesaki and C. M. Soukoulis, M. Agio, �??Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 µm,�?? Appl. Phys. Lett. 80, 547-549 (2002). [CrossRef]
  4. S. Y. Lin, E. Chow, S. G. Johnson, J. D. Joannopoulos,�?? Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-µm wavelength,�?? Opt. Lett. 25, 1297-1299 (2000). [CrossRef]
  5. M. Augustin, H.-J. Fuchs, D. Schelle, E.-B. Kley, S. Nolte, A. Tunnermann, R. Iliew, C. Etrich, U. Peschel, F. Lederer, �?? High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices,�?? Appl. Phys. Lett. 84, 663-665 (2004). [CrossRef]
  6. B. D�??Urso, O. Painter, J. O�??Brien, T. Tombrello, A. Yariv, A. Scherer, �??Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,�?? J. Opt. Soc. Am B 15, 1155-1159 (1998). [CrossRef]
  7. T. Baba, A.Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, �??Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,�?? IEEE J. Quantum Electron. 38, 743-752 (2002). [CrossRef]
  8. N. Kawai and K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, and K. Asakawa, T. Takemori, �??Confined Band Gap in an Air-Bridge Type of Two-Dimensional AlGaAs Photonic Crystal,�?? Phys. Rev. Lett. 86, 2289-2292 (2001). [CrossRef] [PubMed]
  9. W. Kuang, C. Kim, A. Stapleton, W. J. Kim, J. D. O�??Brien, �??Calculated out-of-plane transmission loss for photonic-crystal slab waveguides,�?? Opt. Lett. 28, 1781-1783 (2003). [CrossRef] [PubMed]
  10. S. I.Bozhevolnyi,V. S.Volkov,J. Arentoft,A. Boltasseva,T. Sondergaard,M. Kristensen,�?? Direct mapping of light propagation in photonic crystal waveguides,�?? Opt. Commun. 212, 51-55 (2002). [CrossRef]
  11. S. Yamada, T. Koyama, Y. Katayama, N. Ikeda, Y. Sugimoto, and K. Asakawa, N. Kawai and K. Inoue, �??Observation of light propagation in two-dimensional photonic crystal-based bent optical waveguides,�?? J. Appl. Phys. 89, 855-858 (2001). [CrossRef]
  12. T. Baba, N. Fukaya, J. Yonekura, �??Observation of light propagation in photonic crystal waveguides with bends,�?? Electron. Lett. 35, 654-655 (1999). [CrossRef]
  13. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937-1939 (2000). [CrossRef]
  14. E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G.A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, �??Three-dimensional control of light in a two-dimensional photonic crystal slab,�?? Nature 407, 983-986 (2000). [CrossRef] [PubMed]
  15. D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, D. W. Prather, �??Analysis of splitters for self-collimated beams in planar photonic crystals,�?? Opt. Express 12, 1823-1831 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1823">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1823</a> [CrossRef] [PubMed]
  16. F. Bresson, C. C. Chen, G. C. Chi, Y. W. Chen, �??Inclusion of defects in opal-like photonic crystals layers with a stop-band in the visible range,�?? Appl. Surf. Science 17, 281-288 (2003). [CrossRef]
  17. V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, H. Misawa, �??Tailoring and characterization of photonic crystals,�?? J. of Photochemistry and Photobiology C 2, 35�??69 (2001) [CrossRef]
  18. K. Kawano, T. Kitoh, �??Introduction to optical waveguide analysis,�?? (John Wiley & Sons Inc, New York, 2001), for the effective index method: pp. 20-35; for BPM: pp. 165-232; for FDTD: pp. 233-250.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited